Synthesis of Asynchronous VLSI Circuits

Alain J. Martin

Computer Science Department
California Institute of Technology

Caltech-CS-TR-93-28

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
MAR 2000 2. REPORT TYPE 00-03-2000 to 00-03-2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Synthesis of Asynchronous VLSl Circuits £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 147
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Erratum: Synthesis of Asynchronous VLSI
Circuits

Alain J. Martin
Department of Computer Science

California Institute of Technology
Pasadena CA 91125, USA

March 22, 2000

This document is old (1991) and in several respects doesn’t describe
Caltech’s current approach to asynchronous VLSI design, especially
concerning design for high throughput. However, everything in the
document is valid and relevant to today’s design, except for one error.

On pp. 38 through 41, arbiters and synchronizers are described and
a circuit implementation is given for the arbiter. This implementation,
which has-been used successfully in many circuits, is correct, and, as
far as I know, it is the best implementation of an arbiter.

However, the document suggests that the synchronizer can be im-
plemented in the same way as the arbiter, although it does not actually
give such an implementation. An implementation of the synchronizer
similar to the one of the arbiter would be incorrect, as the circuit could
deadlock in some pathological cases.

We are currently writing a paper describing a correct implementa-
tion of the synchronizer. Anybody interested in getting a copy should
send an emalil to alain@cs.caltech.edu.

Synthesis of Asynchronous VLSI Circuits

Alain J. Martin?
Department of Computer Science
California Institute of Technology

Pasadena CA 91125, USA

August 9, 1991

1Te research described in this paper was sponsored by the Defense Advanced
Research Projects Agency, DARPA Order number 6202, and monitored by the Office
of Naval Research under contract number N00014-87-K-0745.

Contents

1 Introduction

2 Communicating Hardware Processes
2.1 Data Types and Assignment

2.2 Arrays

2.3 Composition Operators

2.4 Control Structures

2,41 Selectlon e e e e e e e e e e e e
242 Repetition.
2.4.3 Reactive Process Structure
2.5 The Replication Construct

2.6 Procedures and Functions
2.7 Concurrent Processes

2.7.1 Communication Commands, Ports, and Channels
2.7.2 Semantics of Synchronization
273 Probe
274 Example. e
275 Communication.,
2.8 Examples e e e e
281 StremMerge. L oo
282 Buffers. L o o o e e
283 AlLazyStack
2.8.4 Palindrome Recognizer.
2.8.5 Distributed Mutual Exclusion on a Ring of Processes .
2.8.6 An Asynchronous Microprocessor
2.8.7 First Decomposition into Concurrent Processes

3 The Object Code, Production Rules

3.1 Introduction

311

Definitions

3.2 VLSI implementationof PRs

CONTENTS

3.2.1 The CMOS transistors, 29
3.2.2 Threshold voltages 30
3.2.3 Switchingeircuits. L 31
33 Operators v v i i e e e 32
3.3.1 The Standard Operators 33
3.3.2 Multi-Input Operators 37
3.4 Arbiter and Synchromizer L 38
3.41 Arbiter 38
3.4.2 SBynchromizer 39
3.4.3 Implementation and Metastability, 39
The Compilation Method 43
41 Imtroduction. e 43
4.2 Process Decomposition L0000, 43
4.3 Handshaking Expansion 44
4.3.1 Simultaneous Completion of Non-Atomic Actions 45
4.3.2 Four-phase Handshaking 46
433 Probe . .. L 47
4.3.4 Choice of Active or Passive Implementation 47
435 Reshufing 48
436 Lazy-activeprotocol 48
4.4 Production-rule Expansion 49
4.4.1 Notations and Definitions 49
442 SequencinNE v v vt e e e e 50
4.4.3 Acknowledgement, 50
4.4.4 Implementation of Stability 51
4.4.5 Self-Invalidating PRs. 51
Production Rule Expansion 53
51 Introduction. 53
5.2 Straightline Programs 53
5.3 State Assignment With State Variables 54
5.4 The Basic Algorithm For PR expansion 54
5.4.1 First Method: Weakening Strong Guards 55
5.4.2 Second Method: Strengthening Weak Guards 55
5.5 Operator Reduction« 57
5.6 Symmetrizationo 58
5.6.1 Operator Reduction of the (L/R)-element 59
57 IsochromicForks, 60
5.8 Reshuffled Implementationsof (L/R}. 61
5.8.1 First Reshuffling 61
5.8.2 Second Reshuffling: The D-element 61
5.9 Example 2: A One-place Buffer 62

CONTENTS

5.10 Boolean Register
5.10.1 Mutual Exclusion Between Guarded Commands . . .

5.11 Process Factorization,
5.11.1 Example: Two-to-Four Phase Converter

5.12 Sequencing e e e
5.12.1 The Active-Active Buffer
5.12.2 The (L/AR)-element
5.12.3 The Passive-active Buffer

Case Study: Two Arbitration Problems

6.1 Introduction.
6.1.1 A Fair-Arbiter Program
6.1.2 The Compilation
613 TheCircuit

6.2 Distributed Mutual Exclusion
6.21 Compilationof A oo
6.2.2 Mutual exclusion among guarded commands

6.3 First Solution
6.3.1 Merge e
6.3.2 Circnitfor A’ o
633 Compilationof B.

6.4 Exercise: Implementation without reshuffling

Implementation of the Lazy Stack

7.1 Imtroduction.
7.2 The Control Part of the Stack
721 Compilationof E., ..
7.22 Compilationof F 0.
7.3 Implementation of thedatapath
7.4 Implementation of Channel Interfaces e
7.4.1 Input Actions on a Passive Port
7.4.2 Input Actions on an Active Port
7.5 Output Actions
7.5.1 Active Input and Passive Output
7.6 The Complete Circuit for the Stack
Asynchronous Adders
8.1 Imtroduction.
8.2 Function Evaluation e e e e e e
8.2.1 Delay-Insensitive Codes
8.2.2 Dual-rail Code e e e e
8.2.3 Stable versus Communicated [nputs

8.3 Binary Addition oL oo

4 CONTENTS

8.3.1 Ripple-carry Addition, 106

8.3.2 Handshaking Expansion 107

8.4 Implementation of the Adder Cells 108
8.4.1 Production-rule Expansion 109

8.5 ImplementationIssues L0000 110

9 The First Asynchronous Microprocessor 113
9.1 Imtroduction. 113
9.2 The Processor: The Test Results 114
9.3 Specification of the processor 115
9.4 Decomposition into Concurrent Processes 116
941 Updatingthe PC. 117

9.5 Stalling the Pipeline 117
9.6 Sharing Repistersand Buses 119
9.6.1 Exclusive Useofa Bus. 120

9.7 RegisterSelection. o, 121
9.7.1 Mutual Exclusion on Registers 121

9.8 Conclusion e e e 122

10 Conclusion 123

10.1 Acknowledgments. L L0 125

Chapter 1

Introduction

Delays have dangerous ends.
William Shakespeare

With chip size reaching one million transistors, the complexity of VLSI
algorithms—i.e., algorithms implemented as a digital VLSI circuit—is ap-
proaching that of software algorithms—i.e., algorithms implemented as code
for a stored-program computer. Yet design methods for VLSI algorithms lag
far behind the potential of the technology.

Since a digital circuit is the implementation of a concurrent algorithm,
we propose a concurrent programming approach to digital VLSI design. The
circuit to be designed is first implemented as a concurrent program that ful-
fills the logical specification of the circuit. The program is then compiled—
manually or automatically—into a circuit by applying semantic-preserving
program transformations. Hence, the circuit obtained is correct by construc-
tiom.

The main obstacle to such a method is finding an interface that provides a
good separation of the physical and algorithmic concerns. Among the physical
parameters of the implementation, #iming is the most difficult to isolate from
the logical design, because the timing properties of a circuit are essential not

5

6 CHAPTER 1. INTRODUCTION

only to its real-time behavior, but also to its logical correctness if the usual
synchronous techniques are used to implement sequencing.

For this reason, deley-insensitive techniques are particularly attractive for
VLEI synthesis. A circuit is delay-insensitive when its correct operation is
independent of any assumption on delays in operators and wires except that
the delays be finite[21] . Such circuits do not use a clock signal or knowledge
about delays.

Let us clarify a matter of definitions right away: It has been proved in
{14] that the class of entirely delay-insensitive circuits is very limited. Dif-
ferent asynchronous techniques distinguish themselves in the choice of the
compromises to delay-insensitivity.

Speed-independent techniques assume that delays in gates are arbitrary,
but there are no delays in wires[17]. Self-timed techniques assume that a cir-
cuit can be decomposed into equipotential regions inside which wire delays are
negligible]20]. In our method, certain local ‘forks’ are introduced to distribute
a variable as inputs of several operators. We assume that the differences in
delays between the branches of the fork are shorter than the delays in the
operators to which the fork is an input. We call such forks isochronie.

Although we initially chose delay-insensitive techniques for reasons of
methodology, those techniques present other important advantages in terms
of efficiency and robustness:

o The clock rate of a synchronous design has to be slowed to account
for the worst-case clock skews in the circuit, and for the slowest step in a
sequence of actions. Since delay-insensitive circuits do not use clocks, they
are potentially faster than their synchronous equivalent.

¢ Since the logical correctness of the circuits is independent of the val-
ues of the physical parameters, delay-ingsensitive circuits are very robust to
variations of these parameters caused by scaling or fabrication, or by some
non-deterministic behavior such as the metastability of arbiters. For instance,
all the chips we have designed have been found to be functional in a range of
voltage values (for the constant voltage level encoding the high logical value)
from above 10V to below 1V.

¢ Delay-insensitive circuit design can be modular: A part of a circuit can
be replaced by a logically equivalent one and safely incorporated into the
design without changes of interfaces.

¢ Because an operator of a delay-insensitive circuit is “fired” only when its
firing contributes to the next step of the computation, the power consumption
of such circuit can be much lower than that of its synchronous equivalent.

Since the correctness of the circuits is independent of propagation delays
in wires and, thus, of the length of the wires, the layout of chips is facilitated.

The method indeed produces correct and efficient circuits. It has been ap-
plied, both with “hand compilation” and automatic compilation, to a series

of difficult design problems, such as distributed mutual exclusion, fair arbi-
tration, routing automata, stack, and serial multiplier. All fabricated chips
have been found to be correct on “first silicon”. Although our CMOS imple-
mentation of the basic operators has been overly cautious, and the electrical
optimization techniques have been rather tame, the performance of the chips
has been found to be at least equal to that of synchronous implementations.
We have just completed the design of a general-purpose microprocesser, and
its performances are very encouraging: in 1.6pm SCMOS, it runs at 18 million
instructions per second. (See later for more detail.)

The main reason for the efficiency of the method is that, rather than
going in one step from program to circuit, the designer applies a series of
transformations to the original program. At each stage, powerful algebraic
manipulations can be performed leading to important optimizations in terms
of speed or area.

The most encouraging aspect of the method is that it is really a synthesis
technique: it allows a designer to construct solutions that he would never have
found had he not applied the method. We shall observe that different appli-
cations of the transformations lead to different circuits for the same program.
Although all circuits are semantically equivalent, they may exhibit different
behaviors in terms of speed or size (number of operators used). The method
therefore includes the trade-offs between simplicity and efficiency that should
be available to the V1L.SI designer.

Using concurrency to implement a sequential computation may seem waste-
ful at first sight. But VLS] is essentially a concurrent medinm: concurrency is
implemented at no cost by mere juxtaposition of the concurrent parts. On the
other hand, implementing sequencing requires synchronization and is, in gen-
eral, more expensive. We shall therefore implement sequencing as restricted
concurrency. Once a process has been transformed into a semantically equiv-
alent set, the problem of implementing sequencing has disappeared!

This technique entails one of the main novelties of the method. Other
techniques implement sequencing by transforming the computation into a
finite-state machine, and realizing each state with a state-holding element. In
our technique, some state-holding elements may be needed: we shall see that
in the transformation from sequences to PR set we may have to introduce
so-called state variables which correspond to state-holding elements. But the
number of those elements is drastically less than in techniques using finite-
state machines.

We first introduce the “source code” notation, called Communicating Hard-
ware Processes, or CHP, which is a concurrent progranuming notation inspired
by C.A.R. Hoare’s CSP[5]: A program is a set of concurrent processes commu-
nicating by input and output commands on channels. Second, we describe the
object code notation, called production rule set, which is an entirely concur-

8 CHAPTER 1. INTRODUCTION

rent programming paradigm: All enabled commands can be fired concurrently
at any time. This notation is one of the main innovations of the method and
is an interesting notation for digital VLSI all by itself.

Next, we describe the four main steps of the compilation (process decom-
position, handshaking expansion, production rule expansion, operator reduc-
tion) and illustrate them with a number of examples. In particular, we present
the different algebraic transformations that can be applied at different stages
of the compilation, and which give the method iis flexibility and efficiency.

Chapter 2

Communicating Hardware
Processes

The source notation is a program notation and not a hardware description lan-
guage. It is inspired by C.A.R. Hoare’s CSP[5] and E.W. Dijkstra’s guarded
commands[3], and is based on assignment and process communication by
megsage-passing.

2.1 Data Types and Assignment

The only basic data type is the boolean. The other types—integer and floating
point—are collections of booleans that we represent in the PASCAL record
notation.

For b boolean, the command b := true, also denoted b1, is the assignment
of the value true to b. Similarly, the command b := false, also denoted b |,
is the assignment of the value false to b.

An integer of “length” n is a predefined record type consisting of » boolean
components {“fields” in the PASCAL jargon). For instance, if & is declared
as an integer of length &, then z is a collection of the 8 boolean variables: z.0,
z.1, z.2,..., z.7.

The existence of this predefined record type for integers does not preciude
the programmer from introducing other records to structure the data. For
instance, in the program of the microprocessor, which we will introduce later,
the integer variable ¢ represents (contains) the currently executed instruction.
This value is declared as a record of several types depending on the type of
the instruction. For ALU instructions and ordinary memory instructions, the

9

10 CHAPTER 2. COMMUNICATING HARDWARE PROCESSES

type is:
aly = record
op: alu.15.alu.12
z: alu.ll. .elu.8
g alu.T.alu.d
z: alu.3..alu.0
end,

where the field op contains the “opcode” of the instruction, the fields =
and y contain the indices of the registers to be used as parameters of the
instruction, and z contains the index of the register in which the resuit of the
instruction execution is to be stored.

Since operations on boolean variables are the only primitive operations,
any operation on other data types appearing in a program must be understood
to be a shorthand notation or function call for the sequence of operations on
boolean variables that will implement if.

For instance, given two integers z and y of the same length n, the assign-
ment

Yi=g
is a shorthand notation for the multiple assignment
3.0, 9.1, ..., w.in—-1):=20, 21, ..., z.{n-1).

The multiple assignment of n expressions to n variables is different from
the concurrent composition (which we will introduce shortly) of the n ele-
mentary assignments. In the multiple assignment, the n expressions are all
evaluated before the results are assigned to the corresponding variables. -

For the sake of clarity, we will use the usual integer arithmetic operators
(for instance, ¥ := z + 1 in the program of the microprocessor) in the first
description of an algorithm. However, since these operators are not primi-
tive constructs of the language, they are subsequently replaced with calls to
functions that implement the operators in terms of boolean operations.

2.2 Arrays

The array mechanisin is an address-calculation mechanism, and is used when
the identity of the element in a set of variables that is to be used for some
action will be determined during the computation. For example, the proces-
sor uses three arrays: the instruction memory array, ¢mem, whose index is
the program counter, pc; the data memory array, dmem; and the array of
general-purpose registers, reg. Hence, the execution of a lead instruction, 4,
is described by the assignment:

regli.z] := dmem [regli.z] + regli.y]].

2.3. COMPOSITION OPERATORS 1

In this example, regli.z] represents the register whose location (address in
the array) is the current value of the field z of the current instruction ¢. And
similarly for reg[i.z] and reg[i.y]. The assignment assigns to regli.z] the value
of the element in the array dmem at a location which is the sum of the contents
of registers reg[t.z] and reg[i.y].

2.3 Composition Operators

There are three composition operators (also called “constructors”): the se-
quential operator, represented by the semicolon; the concurrent, or parallel,
operator represented by the parallel bar, ||; and the coincident operator, rep-
resented by the bullet.

The semantics of the sequential composition 51; .52 are well known: “First
execute S1 and then execute S2.” The semicolon is associative, but of course
not commutative.

We will assume that the semantics of the parallel composition are also well
known, although we are aware of how difficult it is to define these semantics
formally and simply: S1 |} 52 denotes the parallel, or concurrent, execution
of 81 and S2.

‘We postulate that the parallel composition is weakly fair: If at a certain
point of the computation of S1 || 52, z is the next atomic action of S1, then
z will be executed after a finite number of atomic actions of 52.

Parallel composition is associative and commutative.

The bullet operator is used solely to compose communication commands.
{Communication commands will be introduced later.) Furthermore, the co-
incident composition of two communication cernmands is defined only if the
two commands are non-interfering: Two programs are non-interfering if a
variable modified by one program is not used by the other program.

For 51 and 52 non-interfering communication commands, if the executions
of both S1 and S2 in a certain state of the computation terminate, then the
execution of 5152 in that state terminates. Furthermore, the completion of
51 coincides with the completion of §2; ie., S1 and S2 are completed in the
same state of the computation. (We will return to this definition later when
we define the notion of completion of a non-atomic action.)

The bullet operator is associative and commutative.

If 51 and S2 are non-interfering communication commands, the execution
of §1|| 52 is equivalent to the execution of either §1;52 or §2; 51 or S1e 52,

The bullet has the highest priority, followed by the semicolon, followed by
the parallel bar;

50 51;52|| 83 = ((S0e51);52) | S3.

12 CHAPTER 2. COMMUNICATING HARDWARE PROCESSES

2.4 Control Structures

The two control structures are the selection and the repetition of Dijkstra’s
guarded commands. However, the VLSI programmer and the software pro-
grammer adopt opposite attitudes towards non-determinism. Whereas the
latter is encouraged to maximize non-determinism as a way to avoid unneces-
sary choices, the former is requested to minimize non-determinism to reduce
the high cost of arbitration in a direct VLSIimplementation of a set of guarded
cormmands.

It is very difficult, if at all possible, to determine at “compile-time” which
selections require arbitration. We therefore introduce two sets of control struc-
tures, a deterministic set and a non-deterministic set, and let the programmer
explicitly indicate where arbitration is needed.

2.4.1 Selection

The execution of the deterministic selection command
[G1 g Slﬁ e “Gn o d Sn],

where (7; through 7, are boolean expressions, §; through S, are program
parts, (G; is called a “guard,” and G; — §; is called a “guarded command”)
amounts to the execution of the arbitrary S; for which G; holds. At any time
at most one guard holds. If none of the gnards is true , the execution of the
command is suspended until one guard is true .

The non-deterministic selection command

[Gy = Si|...|Gn — Sy
iz identical to the previous one, except that several guards may be true at
the same time. In such a case, an arbitrary true guard is selected.

2.4.2 Repetition

The execution of the deterministic repetition command
*[G1 — Slll oy I]Gn — Sn],

where &; through G, are boolean expressions, and Sy through S, are program
parts, amounts to repeatedly selecting the arbitrary §; for which G; holds,
and executing 5;. At any time, at most one guard holds. If none of the guards
is true , the repetition terminates.

The non-deterministic repetition command

[G1 = S1]...|Gn — 5n]

2.5. THE REPLICATION CONSTRUCT 13

is identical to the previous one, except that several guards may be true at
the same time. In such a case, an arbitrary true guard is selected.

[G], where G is a boolean expression, stands for [G — skip], and thus for
“wait until G holds.” (Hence, “[G]; S” and [G —] are equivalent.)

%[5 stands for *x[true — S] and, thus, for “repeat S forever.”

2.4.3 Reactive Process Structure

From the preceding definitions, the operational description of the statement
*[[G1 — S1...[Gn — S]]

is “repeat forever: Wait until some G; holds; execute an S; for which G
holds.” This structure, which we call “reactive,” is used very frequently. For
instance, the server processes in the distributed mutual exclusion example are
reactive processes.

2.5 The Replication Construct

Both because of the restriction of basic operations to booleans and because
of the high degree of concurrency of VLSI algorithms, such algorithms are
characterized by an extensive use of replication. A typical example is that
some action has to be performed (sequentially or concurreatly) on all the
boolean variables that represent an integer. Another example is that of an n-
place buffer constructed as the concurrent composition of n identical one-place
buffers.

The notation therefore contains a syntactic operator, called the replication
construct, which makes it possible to “clone” any program part into a number
of instances.

The replication mechanism is used to represent a fixed, finite, and non-
empty list of syntactic objects. Operationally, we can say that the replication
mechanism is used to generate a list of objects at compile-time. An element
of the list is any program part. The concatenation operator of the list is any
constructor or separator of the language. The constructors are the semicolon
for sequential composition, and the comma and the parallel bar for paraliel
composition. The separators are the bar for guarded commands, and the
blank and the comma for lists of declarations.

Recursion is the basic mechanism for creating such a list. Since it is
often convenient to “unroll” the simplest form of tail recursion as an iteration
mechanism, both iteration and recursion are available,

The construct for replication by iteration is defined as follows: If

e op is any constructor or separator,

14 CHAPTER 2. COMMUNICATING HARDWARE PROCESSES

e i is an integer variable, called the running indez,

e the range, defined by n..m, where n and m are integer constants, is not
empty, L.e., n < m,

¢ S{i) is any program part in which ¢ appears free,
then,

S(n), ifn=m

(opz . S(1)) o {S(n) op (op t:n+l.m: S(i)), fn<m

For n < m, the definition is ambignous if op is not associative. In this
case the definition is taken to be equivalent to

S(n)op ({(opi:n+l.m:S3EN).

The bracket notation for replication is borrowed from Chandy and Misra[2],
who use it for defining so-called quantified expressions, Observe that a repli-
cation command is not a quantified expression.

For example, the construct [(]: : 0..3 : G(z) — S(7)})] expands to

[G(0) — 5(0)
[G(1) — S(1)
1G(2) — 5(2)
]I]G(3)—*3 3)

The construct
(;¢:0.2: 2.4 := y.((4 + 1)mod3))

expands to
z.0:=9.1; x.l:=92; .2:=y.0.

Replication constructs can be nested as in the following example:

(i:0.9:{,5: 0.0 2(i,5) = 0))).

2.6 Procedures and Functions

Procedures are used with a simple parameter mechanism: A parameter is
either input or output. For procedure p, declared as

procedure p(z : input;y : output); §
the call p(a,b) is equivalent to the program part

z=a;8 b=y

2.7. CONCURRENT PROCESSES 15

A parameter of a function is always an input parameter. For function g,
declared as

function y(z); S

where 5 is the same program part as in procedure p, a statement ¢ containing
the function call y{a) is equivalent to the program part

pla,b); @],

where b is a “fresh” variable.

Tail recursion is allowed but not general recursion, since general recursion
requires the construction, at execution time, of a stack whose size may vary
with the parameters of the computation.

2.7 Concurrent Processes

The main building block for the construction of concurrent computations is
the process. In the design of the microprocessor for instance, each stage of
the pipeline is a process. Concurrent composition of processes is also the
main source of concurrency, although we allow the concurrent composition of
statements inside processes. In strict communicating-process desgign style, a
variable is local to a process, and communication among processes is uniquely
by way of message exchanges. In the design of the processor, we have vio-
lated this rule and allowed processes to share variables in a restricted way: A
variable of one process may be inspected by another process. (Whether this
relaxation of the locality rule is a useful extension or a weakness of the flesh
is not clear at the moment. More experimentation is necessary.)

Hence, the most common structure for the body of a concurrent compu-
tation ig the parallel construct:

plip2]... || pn

where pl through pn are the names of processes that have been declared
beforehand. A process is used very much as a procedure is used: It is first
declared in a declaration statement and then called by using its name in
a statement. Several instances of the same process type can be called by
assigning different names. But, unlike procedures, each (instance of a) process
can be called only once.

2.7.1 Communication Commands, Ports, and Channels

Processes communicate with each other by using communication commands
on ports. A port of a process is paired with a port of another process to

16 CHAPTER 2. COMMUNICATING HARDWARE PROCESSES

form a channel For the time being, we assume that a channel is shared by
exactly two processes; later, we will generalize the definition to more than two
processes. For instance, the microprocessor uses one-to-one, one-to-many, and
many-to-many (buses) channels.

A process is either elementery or composite. The ports of an elementary
process are external: Each is to be connected by a channel to a port of another
process to form a composite process. The external ports of a process are
declared in the heading of the process, like the parameters of a procedure:

p = process{ R, L)

(Later on, we will add some type information to the declaration.) A composite
process, p, is the parallel composition of several processes. The ports of
a component process that are connected by a channel to ports of another
component process are internal to p. The ports of the components that are
left unconnected (dangling) are the external ports of p. The internal ports
and the channels are defined by channel declaration in the process body.

We use two equivalent naming mechanisms for ports and channels. The
first one gives local names to ports and pairs the two ports of a channel. For
example, let two processes. pl and p2, share a channel with port X in pl and
port Y in p2. The declaration is as follows:

pl = process(X}...end
p2 = process(Y)...end
pl| p2
chan(pl. X, p2.Y)
The second mechanism gives global names to channels, and uses the chan-
nel names for all ports of the same channel. For instance, the same two
processes would be described as:

pl = process(C)...end
p2 = process(C)...end
Pl p2
chan C

We prefer local names for ports when the processes involved are identical
(as in the case of the server processes in the distributed mutual-exclusion
example); we prefer global names when the processes are different because
this reduces the nomenclature. {We have used global names in the description
of the processor.)

If the channel is used only for synchronization between the processes, the
name of the port is sufficient for identifying a communication on this port.
For instance, in the program for distributed mutual exclusion, the channel
between a “master” process and its “server” process is identified with port D
in the master and port U/ in the server, and is used for synchronization only.

2.7. CONCURRENT PROCESSES 17

2.7.2 Semantics of Synchronization

Since a message cannot be received before it has been sent, communications
actions on the two ports of a same channel have to be synchronized. The
weakest form of synchronization between the send actions on one port of a
channel and the receive actions on the other port of the satne channel is that
at any moment the number cR of completed receive actions is at most equal
to the number ¢S of completed send actions:

cR < ¢S

The difference ¢§ — c¢R is the number of messages sent that have not
yet been received. These messages have to be buffered somewhere “in the
channel.” Allowing message buffering in the channels obviously implies that
channels be implemented as complex storage devices. In view of our inten-
tion to use communication as an elementary sequencing and synchronization
mechanism, we want to opt for as simple an implementation of channels as
possible. Clearly, the simplest implementation is one in which no buffering
of messages is required. In turn, this choice implies that the synchroniza-
tion between send and receive actions on a channel be such that at any time
¢k = ¢5. Hence the following definition of the synchronization property of
communication primitives.

H two processes, pl and p2, share a channel with port X in pl and port ¥
in p2, then, at any time, the number of completed X-actions in pl1 will equal
the number of completed Y-actions in p2; in other words, the completion of
the n-th X-action “coincides” with the completion of the n-th Y-action.

If, for example, pl reaches the n-th X-action before p2 reaches the n-th
Y-action, the completion of X is suspended until p2 reaches Y. The X-action
18 then said to be pending. When, thereafter, p2 reaches ¥, both X and Y
are completed. The predicate “X is pending” iz denoted as gX.

If, for an arbitrary command 4, cA denotes the number of completed
A-actions, the semantics of a pair (X,Y) of communication commands is
expressed by the two axioms:

cX = cY
-qX V gt

2.7.3 Probe

Instead of the usual selection mechanism by which a set of pending commu-
nication actions can be selected for execution, we provide a general boolean
command on channels, called the probe. The definition of the probe[6] states
that the probe command X in process pl has the same value as qY, and,

.18 CHAPTER 2. COMMUNICATING HARDWARE PROCESSES

symmetrically, the probe command Y in process p2 has the same value as
qgX.

Hence, in the guarded command X — X, the X-action is not suspended
gince qY holds as a precondition of X,

Remark: In view of our declared intention to implement processes in a
distributed and delay-insensitive way, our choice of definitions for communi-
cation may already puzzle some readers: The definition of Al relies on the
simultaneous completion of two actions in two different processes, and the
value of the probe in one process is supposed to be identicel to a suspended
state of another process. A short explanation is that we have chosen defini-
tions of completion and suspension that are unerthodox but valid! []

2.7.4 Example

Process sel repeatedly performs communication action X or communication
action Y, whichever can be completed; sel is blocked if and only if neither X
nor Y can be completed. The program body of selis:

X = X7 = 7]

Obviously, process sel is not fair, because of the non-deterministic choice of
a guard when both guards are true. Negated probes make it possible to
transform sel into a fair version, fsel, whose body is:

#[X = X; [Y - Y[~Y — skip]
l]l_/-—> Y; [X = X[]|-X — skip]
1.

This example illustrates the fact that negated probes are necessary for imple-
menting fairness.

2.7.5 Communication

Matching communication actions are also used to implement a form of dis-
tributed assignment statement, to “pass messages” as it is often said, In that
case, the pair of commands is specified to consist of an input command and an
output command by adjoining to them the symbols “7” and “I”, respectively.
For example, X7 is an input command and then X is an input port, and ¥}
is an output command, and then Y is an output port.

Communication axiom. Let X%u and Y be matching, where 4 is a pro-
cess variable, and v is an expression of the same type as u. The communica-
tion implements the assignment w = v. In other words, if v = V before the
communication, n = V and v = V after the communication.

2.8. EXAMPLES 19

2.8 Examples

In this section, we illustrate the notation with a number of typical exam-
ples. The programs are given with a brief informal explanation. All proofs of
correctnes are omitted.

2.8.1 Stream Merge

A process has two input ports X and ¥, and an output port Z. The process
outputs on port Z a stream of messages which is an arbitrary merge of the
stream of messages received on X and the stream of messages received on Y.,
(The type of the messages is irrelevant. For the completeness of the declara-
tions, let us assume they are integer of size 8.) The streams received on X and
Y can each be either empty, or finite, or infinite. Because of the possibility
that no message will be received on an input port in a current state of the
system, an input port has to be probed before each input communication on
the port in order to avoid deadlock. The solution is:

MERGE = process{X?int(8), Y7int(8), ZYint(8))
u : int(8)
[X — X7u; Zlu)
| — Y7u; Zl]
]

Jend

A number of remarks are in order. First, observe that the process has the
typical “reactive process” structure mentioned in Subsection 2.4.3. Second, in
absence of any other specification, we have to assume that both probes may be
true at the same time if there are pending communications on both input ports
at the same timme. We therefore had to use the nondeterministic version of the
selection statement. Third, the above solution requires an internal variable
w of the same type as the messages to buffer the last message received and
not yet sent. But such a buffering is expensive and, in this case at least,
unnecessary. We can directly output on Z the message being received on X
or Y. Instead of X Tu; Zlu, we can write ZI(X7). And similarly for the other
guarded command.

2.8.2 Buffers

Next, we construct a one-place buffer. The process inputs 8-bit integer mes-
sages on the input port L, and outputs them in the same order on the output
port R.

20 CHAPTER 2. COMMUNICATING HARDWARE PROCESSES

BUF1 = process(L?nt(8), Rlint(8))
z @ int(8)
*[L7z; Rlz|
end

(Like the previous example, the above process can be implemented without
introducing the internal variable z.)

A buffer of size n can be constructed as the linear composition of n one-
place buffers.

1 BUF({n)= process(L?int(8), Rlint(8))

2 p(i:0.n—1}: BUF1

3 (I} : O = 1 : p(4))

4 chan(i: 0..n — 2: (p().R,p(i + 1}.L))
5 p(0).L = BUF(n).L

6 p(n—1).R = BUF(n).R

7 end

Let us briefly explain the different commands of this declaration. Line 1 is
the usnal heading which contains the declaration of the external ports of the
process. here I and R both of the type “integer of size 8.” Line 2 is the
declaration of n internal processes p(0) through p(n — 1) of the type one-place
buffer (BUF1). Line 3 is the body of the process which consists of the parallel
composition of the n one-place buffers previously declared.

Line 4 describes how the internal ports are connected to form internal
channels. Line 5 and line 6 are the identification of the external ports with
two ports of the internal processes.

2.8.3 A Lazy Stack

We implement a stack S of size n, n > 0, as a string of n communicating
processes defined as follows:

g M if o= 1,
=1 @RID), ifn>1,

where R, the head of the stack, is a process, and T, the tail of the stack,
is a stack of size » — 1. Process h communicates with the environment of
the stack by the communication actions in?z and outlz, and with T' by the
communication actions putlz and get?z. Hence, h.put matches T.in, and h.get
matches T.out. (We assume that no attempt is ever made to add a portion
to a full stack, or to remove a portion from an empty stack.)

Each stack element is either empty and behaves as procedure E, or is
full and behaves as procedure F. The epithet “lazy” is attributed to this

2.8. EXAMPLES 21

stack because no reshuffling of portions takes place after a portion has been
removed from a full stack element. Hence, the full portions in the stack are
not necessarily contiguous.

E = procedure
[in — in?z; F
lout — get?z; outlz; E
lend

F = procedure
[out — outlz; E
lin — putlz; inlx; F
Jend .

H we assume that a stack element is initially empty, such an element is de-
scribed by the following process:

stack — element = process{inTint(8), outlint(8), get?int(8), putlint(8))
x : int(8)
E
end

The following alternative coding of the body of the stack element process,
due to Peter Hofstee, illustrates the advantages of the probe construct:

E= #[[in - inlz
Jout — get?z

J;
[E&E — outlz
[tn — putlz

11

2.8.4 Palindrome Recognizer

A palindrome is a finite sequence of characters (word, sentence) that reads the
same backward and forward. Discounting the difference between uppercase
and lowercase, the sentence “Able was I ere I saw Elba” is a palindrome. In
other words, the sequence S{i : 0..n — 1) is palindrome if and only if:

Vz':()..[—;—'j—l:S(i)mS(n—l—i)

We want to design a process that determines which prefixes of a given
sequence of at most m characters are palindromes.
More precisely, the environment behaves as the process (body)

*[putlz; get7h]

22 CHAPTER 2. COMMUNICATING HARDWARE PROCESSES

where r is a character and b is the boolean whose value is equal to the predicate
“the sequence of characters transmitted on port put so far is a palindrome.”

The palindrome recognizer pal communicates with the environment through
the input port in and the output port out: For each character received on én,
the boolean answer is output on ouf whose value is “the sequence of characters
received on port in so far is a palindrome.”

The process pel is a linear array of M elementary processes p(i : 0.M — 1)
of type cell, with M = [Z].

cell = process(in?char, outtboolean, putlchar, getTboolean)
varz,y : char, z : boolean
tntz; out!true; z := true;
*[iny; out!((z = y) A z); putly; get?z]
end

pal = process(in?char, outlboolean)
p(:0.M — 1) : cell
{||¢:0.M ~1:p(s))
chan(i: 0.M — 2 : (p(¢}.put. p(i + 1).in))
chan(i : 0.M — 2 : (p(¢).get, p(i + 1}.0ut))
p(0).tn = pal.in
p(0).0ut = pal.out
end

The structure of the cell process can be simplified for the “hottom” process
p(M — 1), The cell process can also be improved by introducing concurrency
between communications.

2.8.5 Distributed Mutual Exclusion on a Ring of Pro-
cesses

An arbitrary number (> 1) of cyclic automata, called “masters,” make inde-
pendent requests for exclusive access to a shared resource. The circuit should
handle the requests from the masters in such a way that

1. Any request is eventually granted, and

2. there is at most one master using the shared resource at any time,

The masters are independent of each other: They do not communicate
with each other, and the activity of a master not using the resource should
not influence the activity of other masters.

A master, M, communicates with its private server, m. When M wants
to use the shared resource (M is said to be a candidaie), it issues a request to

2.8. EXAMPLES 23

m. When the request is accepted, M uses that resource (for a finite period of
time), and then informs m that the resource is free again.

The servers are connected in a ring. At any time, exactly one (arbitrary)
server holds a “privilege.” Only the “privileged server” may grant the re-
source to its master and thereby guarantee mutunal exclusion on the access
to the resource. A non-privileged server transmits a request from its master
(or from its left-hand neighbor) to its right-hand neighbor. A request cir-
culates to the right (clockwise) until it reaches a server whose master is a
candidate (this server ignores the request until it has served its master) or
reaches the privileged server. The privileged server reflects the privilege to
the left (counter-clockwise) until it reaches the server that generated the re-
quest. This server then becomes privileged, and may grant the resource to its
master. The strategy of passing requests clockwise and reflecting the privilege
counterclockwise has two important advantages: First, no boolean message
need actually be transmitted; second, no message need be reflected, as the
completion of a pending request is interpreted as passing the privilege.

master = #|. .._D;CS;D]
server = [[U — [b— skip]-b — Rl U U;bT
{L — [b— skip]|-b— R]; L:b|
11

The boolean b is used to encode the presence of the privilege. The non-
deterministic bar indicates that both guards may be true at the same time,
and therefore arbitration has to take place. We can describe a system in which
n servers are connected in a ring by first defining a process pair consisting of
a master and a server, and then connecting n pairs in a ring:

puair

process(L, R)

m : server

M : master
(mlj)

chan(m.U, M.D)
end

process

p(i: 0.n — 1) : pair
{JJi : 0.n — 1: p(d))
chan(i : 0.n — 1 : (p(¢).R, p((¢ + 1)modn).L))
end

ring

(For a complete description and proof of correctness, see [7])

24 CHAPTER 2. COMMUNICATING HARDWARE PROCESSES

2.8.6 An Asynchronous Microprocessor

We will describe the design of an asynchronous microprocessor in Chapter 9.
In this section, we briefly explain how the concurrent program for the pro-
cessor was derived from a sequential version by semantics-preserving trans-
formations. We do not show the complete derivation but only the first few
steps.

The processor is first described as a sequential program, which is then
transformed info a set of concurrent processes so as to increase the concurrency
in the execution of a sequence of instructions by pipelining. The sequential
program is a non-terminating loop, each step of which is a FETCH phase
followed by an EXECUTE phase.

*| FETCH : i,pc := imem[pc], pc + 1
[off (3) — offset,pe 1= imemlpc], pc + 1;
[—eff (1) — skip

i
EXECUTE : [alu(i) — (regli.z],) ==
aluf(regli.z], regli.y, i.0p, f)
lid(z) — regli.z] ;= dmemireg[i.z] + reg[i.y]]
|st(z) ~ dmem]reg[i.z] + regli.y]} := regli.z]
|ldz(i) — regli.2z] := dmem/|offset + reg[i.y]]
[stz(i) — dmem|offset + reg[i.y]] := regli.z}
[ida(i) — regli.z] := offset + regli.y]
[stpe(i) — regli.z] := pe
[imp(i) — pc := regli.y]
Jbreh(i) — [cond(f,i.cc) — pc = pe+ offset
[~cond(f,i.cc) — skip

]
].

The variables of the program are the following: As we already mentioned,
variable ¢ contains the instruction currently being executed. All instructions
contain an op field describing the opcode. The parameter fields depend on
the types of the instructions. The most common ones, those for AL, load,
and store instructions, consist of the three parameters z, y, and z. Variable
cc contains the condition code field of the branch instruction, and f contains
the flags generated by the execution of an elu instruction.

The two memories are described as the arrays imem and dmem. The
index to ¢mem is the program counter variable pe. Variable offset contains
the offset field that extends certain instructions to the following word. The

2.8. EXAMPLES 25

general-purpose registers are described as the array regl0...15]. Register
reg[0] is special: It always contains the value zero.

The function evaluation (2, f) := aluf (x,y,0p, f) evaluates an elu instruc-
tion with the opcode, op; parameters z and y; and the current value of the
flags, f. The result is an integer, z, and a new value of the flags, f. The
function, eluf, is not described in the program. The boolean functions used
in guards all determine certain properties of the current instruction 4 and are
assumed to be self-explanataory.

2.8.7 First Decomposition into Concurrent Processes

The first step of the decomposition consists in replacing the previous program
with the program:

{[FETCH; E1%; E2] || ¥|E1%; EXECUTE; E2]

We leave it as an exercise to the readers to convince themselves that this
decomposition does not introduce concurrency. The concurrent program is
strictly equivalent to the sequential one.

Concurrent activity between the two processes will be introduced by mov-
ing E2 forward in the code of EXECUTE so that the n + lrst iteration of
FETCH can start before the nth iteration of EXECUTE is finished. This re-
finement, and the further decomposition of EXECUTE into several processes
is not discussed here. The resulting program can be found in Chapter9.

The rest of the exercise will concentrate on the further decomposition of
FETCH . The practical way to exploit concurrency in FETCH is through the
implementation of the multiple assignments. We introduce a process for the
instruction memory which communicates the next instruction at address pc
by a communication action on channel I.D. QObserve that variable pe is shared
by the two processes. We get the following program:

IMEM = «[ID!imem|pc]|
FETCH = #[(ID7i||y:=pc+ l);pci=w;
[off (i) — (ID%offset || y :=pc+ 1)spc =y
[-off () — skip
}; Elli; E2

]
EXEC = «|E1%; EXECUTE;E?)

Next, we delegate the execution of the assignments y 1= pc+ 1;pc =y to a

26 CHAPTER 2. COMMUNICATING HARDWARE PROCESSES

separate process as follows:

FETCH

PCADD

(The reader worrying

= «|PCIL;ID%; PCI2;
[off (i) — PCIL; ID?offset; PCI2
[—off (2) — skip
|; Elli; E2
]
= «[PCIl;y:=pc+ 1 PCI2;pe:=y]

about the cost of these extra communications has to

realize that the two pairs of communications Fl and E2, and PC1 and PC2
are each implemented as the two halves of the same communication action.)

Chapter 3

The Object Code,
Production Rules

3.1 Introduction

Carrying the discrete model of computation down to the transistor level re-
quires that the MOS transistor be idealized as an on/off switch. Unfortu-
nately, the simple semantics of the switch ignore too many electrical phenom-
ena that play an important role in the functioning of the circait. A crucial
innovation of the method is that the transistor need not be viewed as a dis-
crete switch; voltages can change in a continuous way from one stable level
to the other one, provided that the changes are monotonic.

The notation for the object code provides the weakest possible form of
control structure and the smallest number of program constructs. In fact,
it contains exactly one construct, the production rule (PR), and one control
structure, the production rule sel.

We consider the production rule notation to be the canonical representa-
tion of a digital circuit. This representation can be decomposed into several
equivalent networks of digital operators, depending on the set of building
blocks used, or even depending on the technology (e.g., CMOS or GaAs)
used, but the production-rule set represents the circuit independently of the
chosen physical implementation.

3.1.1 Definitions

Production Rule. A production rule (PR) is a construct of the form G — S,
where S is either a simple assignment or an unordered list “s1, s2, s3, ..."”
of simple assignments, and G is 2 boolean expression called the guard of the

27

28 CHAPTER 3. THE OBJECT CODE, PRODUCTION RULES

PR.

Example:
Ay — 2T
-z —ul,vl
The semantics of a PR are defined only if the PR is stable:

Stability. A PR G — S is said to be stable in a given computation, if, at
any point of the computation, G either is false or remains invariantly true
until the completion of §.

Stability is not guaranteed by the implementation. It has to be enforced
by the compilation procedure,

Execution of a PR. An execution of the stable PR G + S is an unbounded
sequence of firings. A firing of G v 5 with < true amounts to the execution
of §. A firing of G — S with G false amounts to a skip.

If § is a list of several simple assignments, the execution of § is the con-
current execution of all asssignments of the list.

Production Rule Set. A PR set is the concurrent composition of all PRs
of the set,

For example, a directed wire with input r and output y is represented by,
or, perhaps more precisely, is the implementation of the production rule set

—
AT

The only composition operation on two PR sets is the set union.

Theorem. The implementation of two concurrent processes is the set union
of the two PR sets implementing the processes and of the PR sets implement-
ing the channels between the processes, if any.

The proof follows from the associativity of the concurrent composition
operator. The other operations on the PRs of a set are those allowed by the
following properties:

e Multiple occurrences of the same PR. are equivalent to one as a conse-
quence of the idempotence of the concurrent composition.

o The two rules G — S§1 and @ = 52 are equivalent to the single rule
G+ 81,52

s The two rules G1 — § and G2 — § are equivalent to the single rule
GIVG2— S

PRs are complemeniery when they are of the type Gl — zTand G2 +— x |.
We require that complementary PRs be non-interfering.

3.2. VLSI IMPLEMENTATION OF PRS 29

Non-Interference. Two complementary PRs are non-interfering when ~G1V
-2 holds invariantly.

It can be proven that, under the stability of each PR, and non-interference
among complementary PRs, the concurrent execution of the PRs of a set is
equivalent to the following sequential execution:

*[select a PR with a true guard; fire the PR]

where the selection is weakly fair {each PR is selected infinitely often). From
now on, we ignore the firings of a PR with a false guard; a firing will mean
a firing of a PR with a true guard.

Hence, any valid execution of a production-rule set in which non-interference
and stability are fulfilled is equivalent to a non-deterministic sequential exe-
cution of the production-rule set. This equivalence facilitates the analysis of
production-rule sets.

Until we return to these issues, we shall assume that the stability and
non-interference requirements are fulfilled.

3.2 VLSI implementation of PRs

Stability and non-interference are the two properties that make the VLSI
implementation of PRs (almost) straightforward. As an example, we describe
a simple implementation of PRs in CMOS technology.

3.2.1 The CMOS transistors

A CMOS circuit is a network of “nodes”—variables—interconnected by tran-
sistors. Certain nodes are also connected to the input-output “pads”, which
provide the interface with the environment—we will ignore the pads in this
presentation. Other nodes are directly connected to the power node, pro-
viding the constant high-voltage value—called VDD-—which represents the
logical constant true or 1. Yet other nodes are directly connected to the
ground node—called GND—providing the constant low-voltage value which
represents the logical constant false or 0.

A node takes the continuous range of voltage values between the high
voltage and the low voltage. Above a certain voltage v1 the value is interpreted
as 1. Below another voltage v0, the value is interpreted as 0. Thanks to the
stability property, the precise values of vl and v0, which vary from node
to node, are irrelevant provided that v0 < vl and the voltage changes are
monotonic.

(Strict monotonicity is not necessary, and is actually impossible to achieve
because of noise, but we will not enter into these details here.)

30 CHAFTER 3. THE OBJECT CODE, PRODUCTION RULES

A CMOS transistor is either of n-type or p-type. A transistor relates three
nodes in the following way. Let g, standing for “gate”, and z and y be the
three nodes. When ¢ is false for an n-transistor, and true for a p-transistor,
no current passes through the the region between z and ¥, called the channel;
thus z and y are left unchanged. When g is set to true for an n-transistor,
or false for a p-transistor, the channel becomes conducting. In this case, =
and y either have the same voltages and are left unchanged, or a current is
established in the channel until z and y reach the same voltage. The common
value reached by z and y depends on electrical properties of © and y that are
determined by the physical sizes (capacitances) of the nodes implementing x
and y and by their interactions with the rest of the circuit. (Differencesin node
capacitances may cause charges to flow through the channel of a transistor
in a way that results in unintended values of the nodes. This phenomenon,
called cherge shoring, may make it quite difficult to predict the final voltage
value reached by & and y.)

In order to define the net-effect of a PR independently of the physical
paramieters of its implementation, we are going to restrict the use of transis-
tors. (In particular, the restriction will eliminate most occurrences of charge
sharing.)

We impose the condition that a transistor used in isolation connect only
two variables of the circuit: the gate g and one of the other two nodes, say =,
The third node of the transistor is either the power or the ground. With this
restriction, the behavior of a single n-transistor is

ger2z] or g z].
The behavior of a single p-transistor is

—g—zT or —grz|.

3.2.2 Threshold voltages

The current in the channel of a transistor is a function of the se-called gate-
to-source voltage, Vg, defined as V(g) — min(V(z}), V(y)) for an n-transistor,
and as V{g) — maz(V(z}, V(y)) for a p-transistor. In first approximation, the
current is agssumed to be zero when

Vos S Vin

for an n-transistor, and
Vgs > th

1 This notion of channel is unrelated to the one we introduced for commaunication among
processes.

3.2. VLSI IMPLEMENTATION OF PRS 31

for a p-transistor. Vi, and V;, are called the threshold woltages. (Typically,
Vin = 1V and Vj, = —1V.)

Because of the existence of threshold voltages, if an n-transistor is used to
implement g — z 1, the final value of z is not a “strong” 1, since the channel
will stop conducting as soon as the voltage of z is within Vi, of the gate
voltage. And symmetrically, a p-transistor used to implement —g — z | does
not produce a “strong” zero as final value of z. Since the voltage drops caused
by the threshold voltages accumulate as we compose operators, it is important
to produce strong signals in order to be able to compose an arbitrary number
of operators. We shall therefore restrict our use of n-transistors to PRs of the
form

gr z] (3.1)

and p-transistors to production rules of the form

g 2 T - (32)

With these restrictions, all implementations produce strong signals.
Threshold voltages are difficult to adjust in CMOS technology. Actually,
they tend to become more variable as the feature size decreases. (They may
also vary during the activity of the circuit because of some electrical interac-
tion with the substrate, called body effect.) For constant node capacitance,
variations in thresholds are accountable for most of the discrepancies in prop-
agation delays on a CMOS chip. In particular, these variations exclude the
possibility that the ordering in space of a set of variables along a common wire
be used to infer an ordering in time of a set of transitions of these variables.

3.2.3 Switching circuits
Consider the canonical (stable) PR

b— z]

where b is a boolean expression in terms of a set of variables. These variables
are used as gates of transistors implementing a switching circuit s correspond-
ing to b: s is a series-parallel switching circuit between the ground node (also
called GND) and z. GND has the constant value false . The other constant
node, the power-node VDD, has the constant value true .

The switches are n-transistors whose gates are the variables of b, possibly
negated. Furthermore, we have:

b = “there is a path from ground to z in §"

32 CHAPTER 3. THE OBJECT CODE, PRODUCTION RULES

By construction of s, if b holds and remains stable, z is eventually set to false
. (For this reason, s is called a pull-down circuit.) Hence, s is exactly the
implementation of the production rule b+ z |.

Using a symmetrical argument, we can show that the same series-parallel
circuit as s, but with VDD and z connected, and whose switches are p-
transistors, implements the production-rule:

bnegi— 27,

where bneg is derived from b by negating all variables. (This circuit is called
a pull-up circuit.)

3.3 Operators
The two PRs that set and reset the same variable, like

bl 21

b2z, (3.3)

are implemented as one operator.

Let sl be the pull-up circuit corresponding to b1, and let s2 be the pull-
down circuit corresponding to b2. The two circuits are connected through the
common node z. Since non-interference has been enforced, —b1 vV —b2 holds at
any time. This guarantees the absence of a conducting path between power
and ground when the operator is not firing. (A path may exist for a short
time when the operator is firing.)

Definition. The operator implementing the two rules is called “combina-
tional” if bl V b2 holds at any time, and “state-holding™ otherwise.

By definition, if the operator is combinational, there is always a conducting
path between either VDD or GND and the output z. Hence, the value of the
output is always a strong false value or a strong true value, and therefore the
circuit corresponding to the composition of s1 and s2 is a valid implementation
of the operator.

For example, PRs 3.1 and 3.2 together implement an inverter. The circuit
of Figure 3.2 implements the nend-operator defined by the PRs

aAb— 2]
—aV —bts 2T

If 3.3 is a state-holding operator, ~b1 A —b2 may hold in a certain state. In
such a state, node z is isolated; _there is no path between z and either VDD or
GND. In MOS technology, an isolated node does not retain its value forever;
eventually the charges leak away through the substrate and also through the

3.3. OPERATORS 33

Figure 3.1: CMOS implementation of a combinational operator

transistors of the pull-up and pull-down circuits. If the PRs of the operator are
fired frequently enough to prevent leakage, the implementation of Figure 3.1
can be used for a state-holding operator. Such an implementation is called
dynamic.

Otherwise, it is necessary to add a storage element to the ontput node
of a state-holding operator. Such an implementation is called stetic. In the
sequel, we assume that only static implementations are used for state-holding
operators.

A standard CMOS implementation of such a storage element consists of
two cross-coupled inverters (see Figure 3.3). This implementation inverts the
value of z.

The “weak” inverter, marked with a letter w on the figure, connects z
to either VDD or GND through a high resistance, so as to maintain 2 at its
intended voltage value [22].

The implementation of a static state-holding operator is slightly more
costly than that of a combinational operator because of the need for a storage
device. Hence, given a pair of PRs that are not combinational, we may first
try to modify the guards-—under the invariance of the semantics—so as to
make them combinational.

3.3.1 The Standard Operators

All operators of one or two inputs are used, and are therefore viewed as the
standard operators.

34 CHAPTER 3. THE OBJECT CODE, PRODUCTION RULES

Figure 3.2: CMOS implementation of a NAND-operator

One-Input Operators

The two operators with one input and one output are the wire:

zwysE z—yl
zeyl,

and the inverter:
~ewy =z yl
r—yl .

Most operators we use have more inputs than outputs. But, in general,
the compouents we design have as many outputs as inputs. Hence, we need
to reset the balance by introducing at least one operator, the fork, with more
outputs than inputs. A fork with two outputs is defined as:

zf(y,z)= ze—yl,2]
—weylzl .

The wire and the fork are the only two operators that are not implemented
as a pull-up/pull-down circuit—called a restoring circuit—but as a simple
conducting interconnection between input and outputs.

3.3. OPERATORS 35

51

52

<

Figure 3.3; A static implementation of a state-holding operator

The Wire as a Renaming Operator

Because the implementation of a wire is the same as that of a node, the wire
behaves as a renaming operator when composed with another operator: The
composition of an arbitrary operator O with output variable z with the wire
zwy is equivalent to O in which z is renamed y. The composition of operator
O with input variable z with the wire ¥ w = is equivalent o O in which z is
renamed y. {Observe that O can even be a wire.)

Unfortunately, the fork is not a renaming operator since the concurrent
assignments to the different outputs of the fork are not completed simpulta-
neously. In order to use a fork as a renaming operator, we will later have to
make the timing assumption that such a fork is isochronic.

Combinational Operators with Two Inputs

We construct all functions B of two variables z and y such that

Bes z 7
—|B|——>zl .

36 CHAPTER 3. THE OBJECT CODE, PRODUCTION RULES

We get for B: z Ay, zVy, and z = y. We will not list the functions obtained by
inverting inputs of B, (On the figures, a negated input or output is represented
by a small circle on the corresponding line.) This gives the following set.

" The and, with the infix notation (z,y) A z, is defined as:

zAy —zT
rV oy oz

The or, with the infix notation (z,y) V z, is defined as:

zVy — 21
e Aoy =z .

The equality, with the infix notation (z,y) eq z, is defined as:

=y —z]

State-Holding Operators with Two Inputs
Next, we construct all different two-input-one-output operators of the form

bl— z7
b2 2|

such that -6l V —b2 holds at any time, but bl £ —b2. We select for b1 either
T Ay, or zVy,or z =1y Foreach choice of b1, we construct b2 as any of the
effective strengthenings of —b1.

For b1 = (2 Ay), we get for 62: mz Ay, ~z Ay, -z, and z # y. The first
three choices of 42 lead to the following state-holding operators:
The C-element

(,9)Cz= chy—z]
"z Aoyer 2] .

{The C-element was introduced by David Muller, and described in [17].)
The switch
(z.9)sw z= zAy—2z1
St Ay—z) .

The asymmetric C-element

(z,9)aC z= zAywm 2]
ar b 2z | .

For b2 = (z # y), we get the operator

cAy—zT.
TFE Yy z] .

3.3. OPERATORS 37

But, if the stability condition is fulfilled, this operator is not state-holding.
Because of the stability requirement, the state in which -z A -y holds—the
“storage state”——can only be reached from states £ A =y and =z Ay. In both
states, -z holds, and, therefore, =z holds in the storage state. Hence, we can
weaken the guard of the second PR as (z # y) V (-z A —y), ie, =z V .
Hence, the operator is equivalent to the and-operator (z,y) A 2.

For bl = (z V), no effective strengthening of —bl is possible.

For bl = (z = y), we get the operator:

r=y—z]
shA=y— 2| .

But if the stability condition is fulfilled, this operator is not state-holding
for the same reasons that the operator with bl = z Ay and 82 = (z # y) is
not.

Flip-Flop

The canonical form we choose for the flip-flop is :

(2,9} f 2= z+— 21
Y=zl

which requires the invariance of =z V y to satisfy non-interference. Observe
that the flip-flop (z, y}ff 2 can always be replaced with the C-element (z.,y)C»
but not vice versa.

3.3.2 Multi-Input Operators

We use n-input. and, or, C-element, whose definitions are straightforward, We
use a multi-input flip-flop defined as:

(@1, By, L) mff 2= Vitoie 2]
Vitmgimz]

where (Vi: —z) V (Vi)
‘We also use the combinational if~operator—sometimes called multiplezer—
defined as:
(z.yz)ifu= (zAY)V(CzAZ)—ul
(zA-y)V(~zA-z)—u] .

The most general and most often used operator is the generalized C-
element, of which all other forms of C-elements are a special case. It im-
plements a pair of PRs

Bl—z1
B2z

38 CHAPTER 3. THE OBJECT CODE, PRODUCTION RULES

in which Bl and B2 are arbitrary conjunctions of elementary terms. (As
usual, the two guards have to be mutually exclusive.) For example:

aAbAc— 2T
~aAd—z!

can be directly implemented with a generalized C-element. Observe that the
limiting factor for the size of the guards is not the number of inputs, but the
number of terms in a conjunction.

3.4 Arbiter and Synchronizer

So far, we have considered only PR sets in which all guards are stable and
non-interfering. But we shall have to implement sets of guarded commands—
selections or repetitions—in which the guards are not mutually exclusive, as
in the probe selection example. Therefore, we need at least one operator that
provides a non-deterministic choice between two true guards.

3.4.1 Arbiter

The simplest selection between non-exclusive guards is of the form

e — -
ly— -

I}

where = and y are simple boolean variables, and the two guards are stable. In
order to distinguish among the three basic states of the system—i.e., neither
x nor v is selected, z is selected, or y is selected—we need to introduce two
outputs, say, u and v, as follows:

Wz -t
ly—v1 -

Il

Initially, =u A v holds as coding of the state “no selection made”. Hence,
when the selection is considered completed, which is just a matter of definition,
% and v should be set back to false. We get

[z —ul; [Hz]; ul
]]I}y—>vT; [-y]s v L (3.4)

If =% A —v holds initially, ¢ V —v holds at any time,.

The above program is a description of the operator known as the “basic
arbiter” or “mutual exclusion element,” denoted as (z,y} arb (u,v). Observe
that the choice between the two guards is not fair.

3.4. ARBITER AND SYNCHRONIZER 39

3.4.2 Synchronizer

When negated probes are used, for instance to implement fairness, we have
to implement selection commands with unstable guards . The synchronizer is
the only operator that accepts non-stable guards. It is defined as

HoAz—oul; [z ul
]}i—rb/\z—w) T [=z]; vl (3.5)

Variable & may change at any time from false to true . But both b
and z remain true until % or v has changed. Hence, the guard —b A z is
unstable, whereas the guard b A z is stable. As in the arbiter case, if —u A —w
holds initially, -u V —w holds at any time. (The synchronizer operator was
introduced in [9].)

3.4.3 Implementation and Metastability

Let us first consider the PR sets for 3.4 and 3.5 that contain unstable rules.
The PR set for the “unstable arbiter” is

zA-~v]
gA— vl
zVur—ul
yVu—vl] .

The PR set for the “unstable synchronizer” is

bAzA- v ul

“bAzA-u— vl

—“zVorr gl
“zVur v .

The first two PRs of the arbiter are unstable and can fire concurrently. The
same holds for the first two production rules of the synchronizer: since b can
change from false to true at any time, both guards may evaluate to true .

Let us analyze the PR set implementation of the arbiter. The synchronizer
case is very similar. The state zAyA(u = v) of the arbiteris called metastable.
When started in the metastable state, with —u A -, the set of PRs specifying
the arbiter may produce the unbounded sequence of firings:

*[(w v 1) (u], v l)]

In the implementation, nodes # and v may stabilize to a common intermediate
voltage value for an unbounded period of time. Eventually, the inherent
asymmetry of the physical realization (impurities, fabrication flaws, thermal

40 CHAPTER 3. THE OBJECT CODE, PRODUCTION RULES

noise, etc.) will force the system inte one of the two stable states where u # v.
But there is no upper bound on the time the metastable state will last, which
means that it is impossible to include an arbitration device into a clocked
system with absolute certainty that a timing failure cannot occur.

The spurious values of # and v produced during the metastable state must
be eliminated since they are not stable and violate the requirement —u V —w.
Hence, we compose the “bare” arbiter with a “filter” taking » and v as input
and producing uf and of as “filtered outputs”. The net-effect of the filter is:

uf ,of 1= (u A —w), (v A u)

(In the CMOS construction of the filter shown in Figure 5, we use the
threshold voltages to our advantage: The channel of transistor ¢1 is conducting
only when (u A —v) holds, and the channel of transistor 2 is conducting only
when (v A —u) holds.)

Figure 3.4: An implementation of the basic arbiter

In delay-insensitive design, the correct functioning of a circuit containing
an arbiter or a synchronizer is independent of the duration of the metastable
state; therefore, relatively simple implementations of arbiters and synchroniz-
ers can be used. In synchronous design, however, the implementations have

34. ARBITER AND SYNCHRONIZER 41

to meet the additional constraint that the probability of the metastable state
lasting longer than the clock period should be negligible.

42 CHAPTER 3. THE OBJECT CODE, PRODUCTION RULES

Chapter 4

The Compilation Method

4,1 Introduction

This chapter briefly introduces the main steps of the compilation procedure:
process decomposition, handshaking expansion, and production rule expan-
sion.

4.2 Process Decomposition

The first step of the compilation, called process decomposition, consists in
replacing one process with several processes by application of the following
Decomposition rule: A process, P, containing an arbitrary program part,
S, is semantically equivalent to two processes, Pl and P2, where Pl is
derived from P by replacing § with a communication action, C, on the
newly introduced channel (C, D) between P1 and P2, and P2 is the process
#[[D — S; D).

The structure of P2 will be used so frequently that we introduce an opera-
tor to denote it: the call operator. We denote it by (D/S), and we say that D
calls (or activates) S. (We will later generalize the implementation of the call
operator so that the implementation mentioned above in the defintion of the
decomposition rile is just a particular case of eth general implementation.)

Observe that process decomposition does not intreduce concurrency. Al-
though P1 and P2 are potentially concurrent, they are never active concur-
rently; P2 is activated from P1, much as a procedure or a coroutine would
be. The newly created subprocesses may share variables; but, since the sub-
processes are never active concurrently, there is no conflicting access to the
shared variables. The subprocesses may also share channels; this will require
a special implementation for such channels. Decomposition is applied for each

43

44 CHAPTER 4. THE COMPILATION METHOD

construct of the language. For construct S, the corresponding process P2 can
be simplified as follows:
o If S is the selection [By — §1]B; — 8;], P2 is simplified as

*“E/\ Bl b Sl;D
||.D A Bg — Sz;D (41)
1.

o If S is the repetition *[B; — S11Bs — 8»], P2 is simplified as

[[DAB; = 8
ﬂﬁ/\Bz — 83
IDA-B,A=B; —» D

1.

e The assignment z := B, where B is an arbitrary boolean expression, is
implemented as the selection [B — z T]-B — =z |], which gives for P2

(4.2)

s[[DAB—z};D
.]]5'5/\-13_»:.3&;1) (4.3)

The generalizations to the cases of an arbitrary number of guarded commands
in selection and repetition are obvious. All assignments to the same variable
are also grouped in the same process. Process decomposition is applied re-
peatedly until the right-hand side of each guarded command is a straight-line
program.

Process decomposition makes it possible to reduce a process with an ar-
bitrary control structure to a set of subprocesses of only two different types:

either a (finite or infinite) sequence of communication actions, or a repetition
of type 4.1, 4.2, or 4.3.

4.3 Handshaking Expansion

The next step of the transformation, the handshaking ezpansion, replaces
each communication action in a program with its implementation in terms
of elementary actions, and each channel with a pair of wire-operators. We
shall first ignore the issue of message transmission and implement only the
synchronization property of communication primitives.

Channel (X,Y) is implemented by the two wires (zo w yi) and (yo w xi).
If X belongs to process Pl and ¥ to process P2, then zo and xi belong to
P1, and yo and i to P2. Initially, zo, i, yo, and yi-—which we will call the
“handshaking variables of (X,Y)"—are false. Assume that the program has

4.3. HANDSHAKING EXPANSION 45

been proven to be deadlock-free and that we can identify a pair of matching
actions X and Y in P1 and P2, respectively. We replace X and Y by the
sequences U, and U,, respectively, with:

U:=zo01; [}
Uy = [v:; yol . (44
Also:
zo— i T
zo Y|
yors x| (45)

—yor zi |,

by definition of the wires. By 4.4 and 4.5, any concurrent execution of P1
and P2 contains the sequence of assignments:

zofy yil; yol; =il .

4.3.1 Simultaneous Completion of Non-Atomic Actions

We introduce a definition of completion of a non-atomic action which makes
it possible to use the notion of simultaneous completion of twe non-atomic
actions.

By definition, the execution of an atomic action is considered instanta-
neous, and thus the simultanecus completior of two atomic actions does not
make sense. (Atomic actions are simple assignments = 7 and = |, and eval-
uation of simple guards, i.e., guards containing one variable. A wait action
of the form [ei] is a non-atomic action that may be treated as the repetition
¥[-ai — skip|.)

A non-atomic action is initieted when its first atomic action is executed.
A non-atomic action is terminated when its last atomic action is executed.

For non-atomic actions, the notion of completion does not coincide with
that of termination. A non-atomic action might be considered completed even
if it has not terminated, i.e., even if some atomic actions that are part of the
action have not been executed. The definition of suspension is derived from
that of completion.

Definition. A non-atomic action X is completed when it is initiated and it
is guaranteed to terminate, ie., when all possible continuations of the com-
putation contain the complete sequence of atomic actions of X,

The above definition can be further explained as follows: Consider a prefix
tl of an arbitrary trace of a computation. (A trace is a sequence of atomic
actions corresponding to a possible execution of the program.) The comple-
tion of X is identified with the point in the computation where t1 has been

46 CHAPTER 4. THE COMFILATION METHOD

completed, if 1) X is initiated in ¢t1, and 2) all possible sequences £2, such that
t1 extended with t2 is a valid trace of the computation, contain the remain-
ing atomic actions of X. Hence, the completions of two non-alomic ecetions
coincide if their completion points coincide.

(Observe that there may be several points in a trace that can act as com-
pletion point, which makes it easier to align the two completion points of two
overlapping sequences so as to implement the bullet operator.)

Definition. Between initiation and completion, an action is suspended.

These definitions of completion and suspension are valid because they
satisfy the three semantic properties of completion and suspension that are
used in correctness arguments, namely:

o {cX=z} X {cX=z+1},

e qX = pre(X), where pre(X) is any precondition of X in terms of the
program variables and auxiliary program variables,

» If X is completed, eventually X is terminated.

These definitions will be used to implement the bullet operator and the
communication primitives as defined by axioms Al and A2. Consider the
interleaving of U/; and U,. At the first semicolon, i.e., after zo T, U; has been
initiated, but cannot be considered cempleted since the valid continuation
that does not contain U, does not contain the rest of U/,. At the second
semicolon, both U, and U, have been initiated, and thus, all continnations
contain the rest of the interleaving of U, and U,. Hence, U, and Uy are
guaranteed to terminate when they are both initiated, i.e., they fulfil A1 and
A2,

4.3.2 Four-phase Handshaking

Unfortunately, when the communication implemented by U, and U, termi-
nates, all handshaking variables are true. Hence, we cannot implement the
next communication on channe! (X,Y) with U, and U,. However, the com-
plementary implementation can be used for the next matching pair, namely:

D, =zo0|; |~z
Dy=[-yi]; yol .

The solution consisting in alternating U, and D, as an implementation of X,
and Uy, and D, as an implementation of Y, is called two-phase handshaking,
or two-cycle signaling. Since it is in most cases impossible to determine syn-
tactically which X- or Y-actions follow each other in an execution, the general

4.3. HANDSHAKING EXPANSION 47

two-phase handshaking implementations require testing the current value of
the variables as follows:

zo := —zo; [zi = zo]
[yi # yol; yo:i=—wo .

In general, we prefer to use a simpler solution, known as four-phese hendshaok-
ing, or four-cycle signaling. In a four-phase handshaking protocol, X-actions
are implemented as “U,; D,” and Y-actions as “U,; D,”. Observe that the
D-partsin X and Y introduce an extra communication between the two pro-
cesses whose only purpose is to reset all variables to false.

Both protacols have the property that for a matching pair (X,Y) of ac-
tions, the implementation is not symmetrical in X and ¥. One action is
called ective and the other one passive. The four-phase implementation, with
X active and Y passive, is:

X =zoly [w]; zol; [-ai] (4.6)

Y = [yi); yols [-wi); yol . (4.7)

(We will introduce an alternative form of active implementation, called
lazy active.) Although four-phase handshaking contains twice as many ac-
tions as two-phase handshaking, the actions involved are simpler and are more
amenable to the algebraic manipulations we shall introduce later. When op-
erator delays dominate the communication costs, which is the case for com-
munication inside a chip, four-phase handshaking will, in general, lead to
more efficient solutions. When transmission delays dominate the communica-
tion costs, which is the case for communication between chips, two-phase is
preferred.

4.3.3 Probe

A simple implementation of the probe X is &4, with X implemented as passive.
(Given our definition of suspension, the proof that this implementation of the
probe fulfills its definition is straightforward.)

A probed communication action X — ... X is then implemented as

zi— ...z0%; [-wi]; zol .

4.3.4 Choice of Active or Passive Implementation

When no action of a matching pair is probed, the choice of which action should
be active and which passive is arbitrary, but a choice has to be made. The
choice can be important for the composition of identical circuits. A simple
rule is that, for a given channel (X,Y"), all actions on onte port (called the

48 CHAPTER 4. THE COMPILATION METHOD

active port) are active, and all actions on the other port (called the passive
port) are passive. If X is used, all X-actions are passive—with the obvious
restriction that ¥ cannot be used in the same program.

However, we shall see that this criterion for choosing active and passive
ports may conflict with another criterion related to the implementation of
input and output commands.

4.3.5 Reshuffling

In 4.6 and 4.7, D, and D, are used only to reset all variables to false. Hence,
provided that the cyclic order of the actions of 4.6 and 4.7 is maintained, the
sequences D, and D, can be inserted at any place in the program of each of the
processes without invalidating the semantics of the communication involved.
This transformation, called reshuffling, may introduce a deadlock.

ReshufHling, which is the source of significant optimizations, will be used
extensively. It is therefore important to know when it can be applied without
introducing deadlock.

There are two simple cases where the reshuffling of sequence “U,; D,; S
into sequence “U,; 8; D;” does not introduce deadlock:

S contains no communication action, or

¢ X is an internal channel introduced by process decompaosition.

4.3.6 Lazy-active protocol

Consider the active implementation of communication command X:
zoT; lzi]; ol [~ai] .

We introduce an alternative protocol, called lazy active:
[-zi]; zol; [z2); o] .

The lazy active protocol is derived from the active one by postponing wait
action [—zi] until the next communication on X, and by adding a vacuous
wait action [=zi] at the beginning of the first communication X. Hence, the
lazy active protocolis a correct implementation when combined with a passive
protocol.

The lazy active protocol is not identical fo a passive protocol in which
the input variable is replaced with its negation. In a passive protocol, the
effective part (the upgoing part) of the protocol is [zi]; zo 1. In a lazy active
one, the effective part is zo 1; {zi].

4.4. PRODUCTION-RULE EXPANSION 49

4.4 Production-rule Expansion

Production-rule expansion is the transformation from a handshaking expan-

sion to a set of PRs. It is the most cracial and most difficult step of the

compilation since it requires enforcing sequencing by semantic means. It con-

sists of three steps: state assignment, guard strengthening, symmetrization.
Consider the handshaking expansion

S = «[[wo]; to; [wil; #1:.. . s{wn-1]; tna] .

The wait-conditions are boolean expressions, possibly identical to true , and
the t; are simple assignments. The extension to the case of multiple assign-
ments between the wait-conditions is straightforward.

The production rule expansion of § is the transformation of S into a
semantically equivalent set of production rules. Let

PE{bthil()Si(n}

be such a set.

4.4.1 Notations and Definitions

For an arbitrary PR p, p.g and p.e denote the guard and the assignment of
p, respectively. The predicate R(a), the result of the simple assignment «,
is defined as: R(z1) = », and R(z|) = —z. An execution of a PR that
changes the value of the assigned variable is called effective, otherwise it is
called vacuous.

With these definitions, the stability of a PR can be reformulated as follows:

Stability. A PR p is stable in a computation if and only if p.g can be fal-
sified only in states where R(p.a) holds. As a consequence, p.g holds as a
postcondition of any effective firing of p.

The production-rule expansion algorithm compiles a handshaking expan-
gion S into a set P of PRs, all of which are stable, with the exception of those
whose guards contain negated probes. Since, as we shall see, the guards of
the PRs are obtained by strengthening the wait-conditions of 3, the stability
of the wait-conditions is necessary to satisfy the stability of the PRs.

A wait-condition w is stable if once w is true , it remains true at least
until the compleiion of the following assignment. Unstable wait-conditions
can be caused by negated probes or unrestricted shared variables. The case
of negated probes will be dealt with separately by introducing synchronizers.
We ignore the use of shared variables in these lecture notes.

In particular, the wait-conditions of the handsaking expansions are stable,
also after reshuffling.

7.6. THE COMPLETE CIRCUIT FOR THE STACK

T >
(S

do

Figure 7.6: Input actions on passive port

do - — O
dil
di2 e ci’

reg - X

Figure 7.7; Input actions on active port

50 CHAPTER 4. THE COMPILATION METHOD

4.4.2 Sequencing

The set P of PRs implements § when the following conditions are fulfilled:
Guard strengthening The guards of the PRs of P are obtained by strengthening
the wait conditions of §: Vi :: b; = w; and, in the initial state, wq = by.
Sequential evecution (Ni by A-R(t;)) <1, i.e., at most one effective PR can
be executed at a time.

Program-order execution For all ¢t If wii1 holds eventually as a postcondition
of t; in S, then b;y, holds eventually as a postcondition of ¢; in P. {Addition
i+ 1is modulo n.)

The first condition establishes that an execution of PR b; — &; in P is
equivalent to an execution of [w;];t; in 5. The second and third conditions
establish that the order of execution of effective PRs of P is the order spec-
ified by S, which we have called the program-order, and that no deadliock is
introduced in the construction of P.

As we shall see, it is not always possible to construct, for a given handshak-
ing expansion, a PR set that satisfies the above three conditions. In cerfain
cases, the handshaking expansion must be augmented with assignments to
new variables, called stete variables. This transformation, which is always
possible, will be explained later.

4.4.3 Acknowledgement

Fulfilling the second and third conditions requires that for any two PRs p :
b+ t and p' : b — #', such that p immediately precedes p' in the program
order,

b = R(t)

holds as a postcondition of p. We say that b’ is the acknowledgement of t.
Hence the

Acknowledgement Property. For a PR set executed in program order,
the guard of each PR is an acknowledgement of the immediately preceding
assignment.

‘We shall see that the acknowledgement property is necegsary but not suf-
ficient to ensure program-order execution.

‘We use two kinds of acknowledgements depending on the type of vari-
able used in the assignment. But other forms of acknowledgments can be
envisioned. If ¢ assigns an internal variable, then the acknowledgement is
implemented by strengthening 8" as b’ A E(t). For example, if £ is T, the
acknowledgement is b’ A z.

I t assigns a handshake variable, i.e., a variable implementing a commu-
nication command, another kind of acknowledgement can be used as follows.

4.4, PRODUCTION-RULE EXPANSION 51

Acknowledgement of Output Variables. For o and xi used in an active
protocol, zi is an acknowledgment of zo 1, —ri is an acknowledgment of zo |.
For wo and zi used in a lazy-active protocol, zi is an acknowledgment of zo 1.
For yo and yi used in the passive protocol of 4.7, —yi is an acknowledgment
of yo 1, yt is an acknowledgment of yo |.

4.4.4 Implementation of Stability

Consider a PR set P, which implements a given program .S. We are going to
show that the acknowledgement property, which is necessary to construct a
P that implements S, is also sufficient to guarantee stability.

The execution of a PR p of P establishes a path between a constant node
(either VDD or GND), and the node implementing the variable—say, z—
assigned by p. Either p.g holds forever after p; or the firing of another PR 1,
the invalidating PR of p, will establish —p.g, hence cutting the path from the
constant node to z.

Let p be the complementary PR of p, i.e.. the PR with the complementary
assignment. I the PR set contains both p and $, then it also contains T
because of the non-interference requirement between complementary PRs.
And we have the order of execution:

p=I<p.

In all the states between I and p, the original path to = is cut. In that
case, we have to see to it that the assignment to z is completed before the
path is cut. Hence the

Completion requirement. Assignment p.a is completed when a PR ¢ is
completed whose guard is an acknowledgement of p.a. The execution order
of the PR set must satisfy

p<g=31I.

vSince this requirement is already implied by the acknowledgement prop-
erty, the construction of P automatically guarantees stability.

We can add an extra requirement to eliminate the pathological cases of
“disguised” self-invalidating PRs, even though such cases rarely arise in prac-
tice, and they can be dealt with at the implementation level.

4.4.5 Self-Invalidating PRs
Definition. A PR p is self-invalidating when R(p.a) = =-p.g.

For example, -z +— = T is self-invalidating.

52 CHAPTER 4. THE COMPILATION METHOD

Self-invalidating PRs are disallowed since they violate the stability require-
ment. Fortunately, they are excluded by the completion requirement since it
implies I # p.

For instance, the circuit consisting of an inverter with its output connected

to its input is excluded by the completion requirement since it corresponds to
the PR set:

—r—z]
Ttz

and the two PRs of the set are self-invalidating. However, the PR set

—x— oy T
y—z]
Tyl

gz

fulfils the completion requirement, although it is the same circuit as previously,
since the only change is the addition of the wire y w .
We eliminate such “disguised” self-invalidating PRs by adding the

Restoring Acknowledgement Requirement. There is at least one restor-
ing PR r satisfying p < v =% I , where r is restoring if it is not part of a wire
or a fork.

With this extra requirement, all forms of seif-invalidating PRs are elimi-
nated.

It is remarkable that the acknowledgement requirement, which is necessary
to enforce the sequential execution of a PR set, is also sufficient to satisfy sta-
bility. From now on, we can manipulate PRs as if the transitions were discrete.
However, we have made no simplifying assumption on the physical behavior
of the system. The only physical requirement so far is that of monotonicity.

Another requirement on the implementation is that the rings of opera-
tors that constitute a circuit keep oscillating. It turns out that eliminating
self-invalidating PRs enforces the condition that a ring contain at least three
restoring operators, which is a necessary (and in practice also sufficient) con-
dition for the ring to oscillate, thanks to the “gain” property of restoring
gates. (See [15] for an explanation of gain.}.

Chapter 5

Production Rule
Expansion

5.1 Introduction

In this chapter, we describe the techniques for production rule expansion in
more detail. We first deal with the simple case of a straightline program.
The general case of a set of guarded commands is introduced in one example.
We also introduce the next step of the compilation, called operator reduction,
which produces a network of cells from production rules.

5.2 Straightline Programs

As a first example, let us implement the simple process (L/R), where R
is an active channel. This process is one of the basic building blocks for
implementing sequencing. The handshaking expansion gives:

#([ti]; ro1; [ril; rol; [—rdl; oty [Hl]; lol] . (5.1)

We now consider the handshaking expansion as the specification of the im-
plementation: Any implementation of the program has to satisfy the ordering
defined by 5.1. The next step is to construct a production-rule set that satis-
fies this ordering. We start with the production-rule set that is syntactically
derived from 5.1:

lirs 1o 1
i TO |
—ri— lol

53

54 CHAPTER 5. PRODUCTION RULE EXPANSION

(As a clue to the reader, PRs of & set are listed in program order.)

Since the program is deadlock-free, effective execution of the PRs in pro-
gram order is always possible. However, some other execution orders may also
be possible. If execution orders other than the program order are possible for
the production-rule set, the guards of some rules are strengthened so as to
eliminate these execution orders.

In our example, program order is not the only execution order for the
syntactic production-rule set: Since —ri holds initially, the third PR can be
executed first. This is also true for the fourth PR; but the execution of the
fourth rule in the initial state is vacuous. Because all handshaking variables
of R are back to false when R is completed, we cannot find a guard for the
transition loT that holds only as a precondition of o] in 5.1. Hence, we
cannot distinguish the state following R from the state preceding R, and thus
the sequential execution condition introduced in section 8 cannot be satisfied.

In order to fulfil the sequential execution condition, we have to guarantee
that each state of the handshaking expansion is unique, i.e., there exists a
predicate in terms of variables of the program that holds only in this state.
The task of transforming the handshaking expansion so as to make each state
unique is called state assignment.

5.3 State Assignment With State Variables

The first technique to define uniquely the state in which the transition lo
is to take place consists in introducing a state variable, say x, initially false,
Handshaking expansion 5.1 becomes

*([ti]; ro 1; [ri]; @1 [el; vol; {=rils lo1; [Hli]; z | [-a): lo]]. (5.2)

Observe that 5.2 is semantically equivalent to 5.1, since the two sequences
of actions that are added to 5.1, namely, z ;[z] and & |; [-z], are equivalent
to a skip. (The newly introduced variable & is used nowhere else.} There
are several places where the two assignments to the state variable can be
introduced. We shall not discuss here the different heuristics that are used in
the placement of the variables., But it is important to observe that minimizing
the number of state variables is not a relevant criterion in the choice of a state
assignment. What counts is minimzing the number of transitions on state
variables, and the sizes of the production-rules guards.

5.4 The Basic Algorithm For PR expansion

We consider a straightline handshaking expansion, and assume that state
assignment has been performed. Hence, each state of the handshaking expan-

5.4. THE BASIC ALGORITHM FOR PR EXPANSION 55

sion is unique, and we can therefore generate a PR set that is semantically
equivalent to the handshaking expansion.

For the time being, we assume that each assignment to a variable, such
as 1 or], occurs at most once in the program. This restriction is easily
enforced by renaming; in the case of a program

p=...2T; ...y zlp 3T Tl
we can rename the variable as
p=.owl Ty sl 227 22

We first perform the handshaking expansion of p’. We then observe that since
~z1 V =22 holds at any time, we can combine z1 and z2 by the two rules:

zlVz2—z?
-zl A-s2—2x].

If we treat the cases of selection and repetition separately, we do not have dis-
junctions in wait-actions. Hence, we can construct all production-rule guards
as conjunctions; disjunction will be introduced next in the symmetrization
step.

5.4.1 First Method: Weakening Strong Guards

Since each state of the handshaking expansion is uniquely defined, the set of
production rules in which each guard is the strongest predicate in this state
is ardered.

The set of strongest guards is constructed mechanically by determining
in each state the value of all variables that are defined in that state: the
strongest predicate in that state is the conjunction of all terms that are true
in that state.

We can then simplify the guards of the PRs by using program properties
of the form “P = R holds as a precondition of the PR” to replace P A R by
P. (This method has been proposed and used by Huub Schols.)

5.4.2 Second Method: Strengthening Weak Guards

The second method, which we have been using most of the time, starts with
the weakest set of guards and strengthens them until the production rule set
is ordered.

For each assignment, the initial guard of the production rule is the wait
action that precedesit in the handshaking expansion. When the assignment—
say, S—— is preceded by another assignment, we introduce the net-effect of the

36 CHAPTER 5. PRODUCTION RULE EXPANSION

preceding assignment as wait action:
2 1; 5 is replaced by = 1;[z]; S

z |; S is replaced by =z }; [-z]; S

For each assignment, we define two sets of states:

o the firing set, which is the set of all states in which the guard of the
assignment holds; and

e the conflicting set, which is the set of all states in which the firing of the
assignment must be disallowed. For assignment S, let S’ be the complemen-
tary assignment. The conflicting set is the set of contiguous states starting at
the state preceding S’ and ending at the state preceding the assignment that
preceeds S,

The “window ofS” is the intersection of the firing set and the conflicting
set of §. The window set must be empty {“the window is closed”). H it is
not, we shrink the firing set of S (by strengthening the precondition) until
the intersection is empty.

Because each state can be uniquely characterized in terms of the program
variables, it is always possible to close the window of each assignment by
strengthening the guards. There may be several possible ways to strengthen
a guard. We choose the one that is the simplest (least number of variables)
and that is best suited for symmetrization of the rules, which is explained
later.

As an example of the use of the algorithm, we prove a theorem that iden-
tifies standard production rules that need not be strengthened. This result
significantly reduces the number of cases to be considered.

Theorem 1. Production rule zi — zo| of the active expansion of commu-
nication action X and production rule —zi — zo| of the passive expansion
of communication action X are always ordered.

Proof. The active handshaking expansion of X is
zoT; {zi]; zol; [~xi]

For xi + zol, the firing set starts at the precondition of xo| and ends at
the postcondition of zo|. The conflicting set starts at the precondition of
zo 1 and ends at the postcondition of zo 1. Observe that even with reshuffling
these two sets are disjoint: the window is closed.

The passive handshaking expansion of X is:

[#5]; wo1; [Hzi); zol

For —zi — zo |, the firing set starts at the precondition of zo| and ends at
any place before [zi]. The conflicting set starts at the precondition of zo T and

5.5, OPERATOR REDUCTION 57

ends at the postcondition of zo 7. Again, even with reshuffling, the window is
always closed. [J

A similar theorem holds for standard production rules involving state vari-
ables.

Theorem 2. For state variable u, introduced as follows in the active hand-
shaking expansion of X:

zots [wil u Ty [u]; zol; [—ad] (5.3)

the production rules z¢ ~ u 1 and u +— zo | are ordered. For state variable
u, introduced as follows in the passive handshaking expansion of X:

[zi]; woT; [mo]; wl; [u]; [-zi]; zol (5.4)

the production rule xo -+ %1 is ordered. The same results hold if any of the
variables involved is replaced by its complement.

The proof, which is similar to that of Theorem 1, is omitted. The results
of Theorem 2 indicate that passive handshaking is more difficult to deal with
than active handshaking.

Let us now complete the production-rule expansion of the Q-element.
Since z has been introduced to distinguish the prestate of ro1 from the
prestate of lo T, we can immediately strengthen the guard of rof with -z
and the guard of lo1 with z. We get:

s All — rol (5.5)
ri ezl (5.6)

T = 70l (5.7)
zA-r: — lol (5.8)
-l = oz (5.9)
—z = o) (5.10)

It is easy to check in 5.2 that the strenghtenings of the guards of 5.5 and
5.8 close the two windows. We further observe in 5.2 that the introduction
of £ 7 in the handshaking expansion of R, and the introduction of z | in the
handshaking expansion of L both fulfil property 5.3 of Theorem 2. Hence,
according to Theorem 2, 5.6, 5.7, 5.9, and 5.10 are ordered, and the above
handshaking expansion is program ordered.

5.5 Operator Reduction

The last step of the compilation, called operator reduction, groups together
the PRs that assign the same variables. Those PRs are then identified with

58 CHAPTER 5. PRODUCTION RULE EXPANSION

(and implemented as) an operator. The program is thus identified with a set
of operators. :

Since we have enforced the stability of each rule and non-interference be-
tween any two complementary rules, we can implement any set of PRs directly.
(For reasons of efficiency, we have to see to it that the guards do not contain
too many variables in a conjunct, which would lead to too many transistors
in series. Hence, the implementation of the set may also involve decomposing
a PR into several PRs by introducing new internal variables.)

The direct operator implementation of the PR set is straightforward:

The PRs that set and reset ro correspond to the asymmetric C-element
(—z,l) aC ro.

The PRs that set and reset o correspond to the asymmetric C-element
{z,-ri) al lo.

The PRs that set and reset z correspond to the flip-flop (r:,12) ff =.

If the above operators are implemented as dynamic, this implementation
of process (L/R) is the simplest possible. If static implementations of the op-
erdtors are required, another implementation might be considered with fewer
state-holding elements since, as we have explained in the first part, static
state-holding operators are slightly more difficult to realize than combina-
tional operators.

A last transformation, called symmelrization, may be performed on the
PR set to minimize the number of state-holding operators. However, since

symmetrization also introduces inefficiencies of its own, it should not be ap-
plied blindly.

5.6 Symmetrization

Symmetrization is performed on the two guards of PRs bl — 21 and 82— 2 |,
when one of the two guards, say, b1, is already in the form z A ~b2. If we
replace guard b2 with -z V b2, then the two guards are complements of each
other; i.e., the operator is combinational. Of course, weakening guard b2 is a
dangerous transformation since it may introduce a new state where the guard
holds, We have to check that this does not cccur by checking the following
invariant:

Given the new rule ~z Vb2 — z |, =z must hold in any state where "z A-b2
holds; i.c., we have to check the invariant truth of

TcVH2V-z.

5.6. SYMMETRIZATION 59

5.6.1 Operator Reduction of the (L/R)-element

The symmetrization of the PRs of the (L/R)-element gives:

—xAlir rol
i]
=liVz—rol
zhA-wir lof
Alies x|
riV -z lo|

The PRs that set and reset ro correspond to the and-operator (-, li) A 7o.
The PRs that set and reset z correspond to the flip-flop (ri,li) ff =.
The PRs that set and reset {o correspond to the and-operator (z,—7i) A

lo.

The flip-flop can be replaced with the C-element (li,7i) C .

The resulting circuit is shown in Figure 5.1. (The dot identifies the input that

is activated first.) This implementation of (L/R), either with a flip-flop or

with a C-element, is called a (-element. The Q-element implementing (L/R)

as above is described by the infix notation (Iz,lo0) @ (ri,ro).

TO TO
Iz e 4 g li /—!‘—Sj‘“——d 71
\\
lo tc) lo <+ <
(a) (b)

Figure 5.1: Implementation of (L/R) with a Q-element

60 CHAPTER 5. PRODUCTION RULE EXPANSION

5.7 Isochronic Forks

In the previous operator reduction, li is an input to the flip-Hop {li,ri) ff =,
and to the and-operator ({i,—z) Aro. Formally, in order to compose the PRs
together to form a circuit, we have to introduce the fork lif (11,{2) and replace
I by I1 as input of the and-operator, and by {2 as input of the flip-flop. We
also have to introduce the forks ri f (r1,72) and z f (z1,22) for the same
reason. -
Let us analyse the effect of the first fork only. The PR set that includes
the PRs of the fork is:
B 17,027
“x Allm rol
ri— z]
-llvVver—rol
gA=ri—lof
-l 11,12
=2z]
iV e lo]

Now we observe that transition [17 o is acknowledged by the guard of the
textually following PR but {21 is not; transition {2 of is acknowledged by
the guard of the textually following PR but i1 | is not. Hence, the assignments
121 and 11 | do not fulfil the completion requirement, and thus are not stable!

We solve this problem by making a simplifying assumption: We assume
that the fork is isochronic, i.e., the difference in delays between the two
branches of the fork is shorter than the deloys in the operators to which the
fork is an input. Hence, when a transition on one output is acknowledged and
thus completed, the transition on the other output is also acknowledged and
thus completed.

This is the only timing condition that has to be fulfilled. In general, the
constraint is easy to meet because it is one-sided. However, the isochronicity
requirement is more difficult to meet when a negated input introduces an
inverter on a branch of the fork, since the transition delays of an inverter are
of the same order of magnitude as the transition delays of other operators.
We have proved that, for the implementation of each language construct,
these inverters can always be eliminated from the isochronic forks by simple
transformations. {These transformations have not been applied to the circuits
presented here as examples, but they are always applied before the circuits
are actually implemented.)

In [14], we have proved that the class of entirely delay-insensitive circuits
is very limited: Practically all circuits of interest fall outside the class. We
believe that the notion of isochronic fork is the weakest compromise to delay-
insensitivity sufficient to implement any circuit of interest.

5.8. RESHUFFLED IMPLEMENTATIONS OF (L/R) 61

Which forks have to be isochronic is easy to decide by a simple analysis of
the PR sets. For instance, the fork r: f (r1,72) also has to be isochronic, but
the fork « f (z1,22) does not. We shall ignore the issue of isochronic forks in
the rest of this presentation.

5.8 Reshuffled Implementations of (L/R)

We illustrate the use of reshuffling by deriving two other implementations
of (L/R). If L is an internal channel introduced for process decomposition,
we can reshuffle the handshaking expansions of L and R without the risk of
introducing deadlock. Let us return to handshaking expansion (14).

5.8.1 First Reshufiling

We postpone the second half of the handshaking expansion of R —i.e., the
sequence 7o }; [-rijl—until after [li]. We get:

#[[li]; roT; [ri); loT; [Hl) rol; [=ril; lol] .
The syntactic PR expansion we now derive is already “program ordered”:
lirol
ri— lo]
“li— 1o

ari— lo| .

The first and third rules specify the wire ({z wro), the second and fourth rules
specify the wire (ré w lo}). Hence, the implementation reduces to two wires!

5.8.2 Second Reshuffling: The D-element

We now postpone the whole handshaking expansion of R until after [-l:]. We
get:
#[[li]; loT; [-ii); rol; [ri]; rol; [-ri); lol] .
We need to introduce a state variable, say z, as follows:
[[l3); = 1; [z]; lo1; [Hk]; rols [rd]; zl; [nal rols [lol]
The PR expansion gives:
i 27
(riv)z—lo1
zA-li—ro]
i 1]
(tiv)—z— ro |
—z A-ri—lo] .

62 CHAPTER 5. PRODUCTION RULE EXPANSION

The terms between parentheses have been added for symmetrization. The
operator reduction gives:

(i, ~ri) f 2
(ri,z)Vlo
(@, i) Aro .

The flip-flop can be replaced with the C-element (14, —r#) C z. The circuit is
shown in Figure 5.2; it is called a D-element.

&

Ti

1

Figure 5.2: A circuit for the D-element

5.9 Example 2: A One-place Buffer

The one-place buffer is the most ubiquitous process. In the processor for
example, each stage of the pipeline is a one-place buffer of the type:

#[L7z; RIf(z)] .
Let us ignore the transmission of messages, and implement the “bare” process:

=L R] .

5.9. EXAMPLE 2: A ONE-PLACE BUFFER 63

One of the most useful implementations of this process is with L lazy-active
and R passive. The handshaking expansion gives:

*[[-li]; Lo 1 {le]; lol; [ril; rot; [~rid]; roi].

We choose to include the state variable z in such a way that the transition
z T is concurrent with lo 1, and transition z | is concurrent with ro 7. We get:

[t bo s 215 [z) [H]; lol; [ril; ot @ ls [al: [-rd); rol] .
The production rule expansion is:

—z A=l A=ro—lo]
lo—z17

s Alim o]
sA-loAri—ro]
TOF T |

-z A-Ti— TO)|

The direct implementation of this production rule set is shown in Figure 5.3.

Figure 5.3: A circuit for the one-place buffer

64 CHAPTER 5. PRODUCTION RULE EXPANSION

5.10 Boolean Register

Cousider the following register process that provides read and write access to
a simple boolean variable, a:

*[["15-» Pz
}q@ —Qlz (5.11)

where =P V =@ holds at any time.

The handshaking expansion uses the double-rail technique: The boolean
value of 7 is encoded on two wires, one for the value true and one for the
value false . Input channel P has two input wires, pil for receiving the value
true , and pi2 for receiving the value false ; and one output wire, po. Output
channel @ has two output wires, gol for sending the value true , and go2 for
sending the value false ; and one input wire, gi. Fach guarded command is
expanded to two guarded commands:

*[pil — = 1y [z]; pols [-pil]s pol
lpi2 — x l; [~z]; pol; [-pi2]; pol
]z Agi— gol 1y [qi]; gol | (5.12)
[z Agi— qo21; [-gi]s go2!

I

5.10.1 Mutual Exclusion Between Guarded Commands

We are now faced with a new problem: enforcing mutual exclusion between
the production-rule sets of different guarded commands. (This problem is
not concerned with making the guards of the different commands mutually
exclusive. For the time being, we are considering only examples where the
guards of the commands are already mutually exclusive.) Let us illustrate our
problem with the compilation of the first two guarded commands. If we just
concatenate the production-rule sets of these two commands, we get:

pil— &1

pil Az pol

—pile pol

pi2 z]

Pi2ZA e pol
—pi2— po] .

However, the second and the sixth guarded commands are interfering since
they set and reset variable po concurrently. For reasons of symmetry, the same
holds for the third and the fifth PRs.

5.10. BOOLEAN REGISTER 65

The problem of ensuring mutual exclusion between PRs of different guarded
commands is the same as enforcing program order between PRs of the same
guarded command. We use the same technique, which consists in strength-
ening the guards of the production rules, if necessary, by introducing state
variables to distinguish between the states corresponding to each true guard.

In the case at hand, we can strengthen the guards of the third and the
sixth rules by combining the two rules as:

—pil Ampi2 - po| .

The non-standard gate implementing the production rules of po is shown in
Figure 5.4.

pit __c|
pi2 —ci
po

pit __.I [_piz
L G

Figure 5.4: Non-standard gate for write acknowledge

We can also strengthen the guards of the third and the sixth rules as:

zA=pilio pol
=z A-pi2s po | .

Now, the PRs of po can be transformed into

(pilAz)V (pi2 A-z)— pol
(~pil A —z) V (-pi2 Az)—pol ,

which is the definition of the if-operator {pil, pi2,z) if po .

The test of the implementation is straightforward. The first and fourth
PRs correspond to the flip-flop (pil, ~pi2) ff 2. The production-rule expansion
of the last two guarded commands gives:

zAgi— golT
Sz Y gies gol |

Sz A qies go2 |

zVgi—qo |

66 CHAPTER 5. PRODUCTION RULE EXPANSION

which corresponds to the two operators (z,¢i) A gol and (—z,¢i) A go2. The
circuit is represented in Figure 5.5.

X TN
SR R S

Lz . e T _
po < IF fr . < qi
Ppiz l * ‘ t

\
\C.% qoy

Figure 5.5: Single boolean register

In the next example, we shall refer to the implementation of the first two
guarded commands as the register operator:

(pil,pi2) reg (po,x) .

We shall refer to the implementation of the last two guarded commands of
(26} as the read operator:

{qi,7) read (qol,qo2) .

5.11 Process Factorization

The next example is used to introduce the technique of process factorization.

The idea is to decompose a process, say, p, described as a handshaking ex-

pansion into a number of processes pl, pl ..., pn such that (pOiipl||...|lpn)

is equivalent to p, i.e., implements the same handshaking sequence as p.
Factorization obeys two rules.

¢ Rule 1: Each output variable belongs to exactly one factor process.
(Hence factorization reduces the number of output variables per pro-
cess.) Input variables may be shared by several factor processes.

5.11. PROCESS FACTORIZATION 67

e Rule 2: Two adjacent actions a; B of the original process are put into
two different processes during factorization if, and only if, the semicolon
between o and 8 is superfluous, Two cases fulfill this condition:

1. the two adjacent actions {=z} z 1; [z] and the two adjacent actions
{z} z |; [~=] for internal variable x, and

2. the pairs of handshaking actions zoT; [zi] and zo|; [-zi] for
an active implementation, and the pair of handshaking actions
yoT; [-wi] for a passive implementation. (This is a direct con-
sequence of Property 1.)

5.11.1 Example: Two-to-Four Phase Converter

The following process converts a passive two-phase handshaking on channel
L into an active four-phase handshaking on channel R. First observe that
the-converter cannot be specified as a buffer *[L; R]. Indeed, let (L', R') be
the channel on which the converter is fo be inserted. This channel maintains
the relation eI’ = ¢R’. The comverter should leave it unchanged. But if
0 < el —¢cR <1, then 0 € ¢/ — ¢R' < 1 holds after insertion of the
converter. Hence, we have to implement the converter such that ¢l = cR,
i.e., we have to interleave the handshaking of I: and R in such a way that L
and R are completed at the same time. We get:

conv = *{[li}; ro1; [ri]; ro; [ori]; lot; [=l]; ro1; [re]; rol; [-ri); lol]

(There are several ways to interleave the handshake sequences of two ac-
tions so as to make their completions coincide. Again, we have chosen the one
in which the waits and the assignments alternate.) We first try to factorize
conv into two processes, pl and p2. We get

pl = +[li]; rof;...

p2 = #[[ri]; rol;...

Here the factorization fails sifice it violates rule 1. Rule 1 is viclated because
actions ro1 and ro | follow each other as output actions in conv, We can
separate the two output actions ro T and ro | by inserting a vacuous sequence
uT; [u] on a newly introduced internal variable u. (Initially, v = false.) We
introduce this sequence after the first [ré]; for reasons of symmetry, we intro-
duce the sequence u |; [—wu] after the second [ri]. The transformed program
is
conv' = #[[lil;ro 15 [ril;u 15 {uliro 15 [-rililo 1
[0 T3 [ré);w L [-u]sro T; [ril Lo |

68 CHAPTER 5. PRODUCTION RULE EXPANSION

Now, we can apply factorization rule 2 without violating rule 1. We get:
pl = %[[li];ro 1; [u];ro |3 [HiE];ro 15 [-u]; ro |]
p2 = #[[ri);u T;[=ril;lo Ty [rilyw |; [ori]; lo |]
It is easy to verify that {pl||p2) = conv'. Since the sequences uT; [u] and
u |; [-u] are both equivalent to a skip in conv’, (pl||p2) = conv.
Process p2 can immediately be identified as a standard process called

a toggle, represented by the infix operator ri tog (u;lo). For pl, we first
strengthen the guards as follows:

pl = #[[~u A li)yro T [l Auliro i [l Auliro T [HlE A —ulsro]

The validity of this transformation relies on invariants from eonv'; it cannot
be justified by properties of pl only.

Now pl can be identified with a difference-operator: {u,{t) dif ro, also
called an ezclusive-or. The corresponding circuit is shown in Figure 5.6.

Io ri

Figure 5.6: Two-to-four phase converter

The kind of process factorization we have described in the previous section
is very helpful but can, in principle, be avoided by applying the standard
technique for production-rule expansion. One case of process factorization
that cannot be avoided is when a process has to be decomposed into two or
more processes, one of which is given. For reasons that will become clear in
a the following chapters, we call this transformation “process quotient”.

5.12. SEQUENCING 69

5.12 Sequencing

There are many ways to implement the sequencing of n arbitrary actions. We
shall introduce the basic operators that are used in the most straightforward
implementations.

5.12.1 The Active-Active Buffer

Consider the program *[S1; S2], where §; and S are two arbitrary program
parts. Process decomposition of this program gives

*[Ls R} [(L'/81) || (R/S) -
Hence, the basic sequencing operator is the process
B(L,, R,) = #[L; R] ,

where both L and R are active. This process is called an ective-active buffer.
The handshaking expansion gives:

*[lo1; [l]: e l;[-l]; ro1; [ri]; 7ol; [~wi]] . (5.13)
Since 7i is false inttially, we can rewrite 5.13 as:
*[-rils lo1; {ti]; lo L3 [l ro Ty [rif; rol] . (5.14)

By comparing 5.14 with (14)—the handshaking expansion of the Q-element,
we observe that B(L,, Rq) = (—ri, o) Q (I4,lo) , which gives the implemen-
tation of Figure 5.7.

5.12.2 The (L/A;R)-element

In order to generalize thie above construction to the case of an arbitrary num-
ber of actions, we need to implement the generalization of the (L/R)-element.
Sequence

*[S1; S2:...350] (5.15)

can be decomposed into a number of shorter sequences by repeatedly ap-
plying process decomposition. There are as many ways to decompose 5.15 as
there are binary trees of n leaves. But observe that, if n > 2, all decomposi-
tions will require at least one process of the form:

(L/AR),

where A and R are active commmunication actions. (The semicolon binds
more tightly than the process call.) We shall use two different reshufilings to

70 CHAPTER 5. PRODUCTION RULE EXPANSION

li ro
i —- jr———
Q
. o ri

Figure 5.7: Implementation of the active-active buffer with a Q-element

implement this process. Again, these reshuffiings maintain the semantics of
the original program if the handshaking expansion of L is not reshuffled.
The first reshuffling is:

¥[[lil; ao Ty [ai]; loT; [l aol; [-ai]; R: lol].

We decompose it into two sequences by applying a process-factorization
decomposition described earlier:

(#[[t2]; aot; [aol]
I)l*[[ail; lot; [~adl; R; lol]

The first sequence is the wire (li w ao). The second sequence is the D-
element (az,lo} D (ri,ro0).
The second reshufliing is:

#{[li]; A; voT; [ri]; lo1; [Hl]; rols [»rd]; lo]] .

5.12. SEQUENCING 71

Again, we decompose it into two sequences by process factorization:

(=[[ri]; lo1; [-ri]; lo]]
|)|*[[5i]; A; rol; [=ld]; rol]

The first sequence is the wire (ri w lo). The second sequence is the Q-
element (li,r0) @ (a7, e0). Both implementations are shown in Figure 5.8.

i_f L‘FT_PR zQJ L——L

Figure 5.8: Implementations of the (L/A; R)-element

Now, the implementation of a sequence of n actions is straightforward. For
instance, for n = 4, we have two “linear” decompositions of (L/S1; S2; 53;.54).
The first one is

({(L/S1; Ly} || (L1/82; La) || (L2/83;84)) .
The second one is
((L/L2: 8a) || (L2/ L3 Ss) || (L1/ 513 52)) -

These two decompositions lead to the linear implementations shown in Fig-
ure 5.9.

N

T2 CHAPTER 5. PRODUCTION RULE EXPANSION

5 S2 S3 5

Sl 52 5'3 54

Figure 5.9: Implementations of (L/S1; 833 S3; 54)

5.12.3 The Passive-active Buffer

In order to compose one-place buffers in a linear chain, one channel must be
active and the other one passive, We implement the buffer with L passive and
R active. This version is denoted by B(Ly, Rq). In order to take advantage
of the active-active case, we decompose the buffer into two processes g and #:

| D" R]
(D/L).

q
t

m

Process q is an active-active buffer. The compilation of ¢ is straightforward.
The handshaking expansion gives:

*([di]; [ti]; lot; [=li]; lol; doT; [~di); dol] .

Since D is an internal channel, we can reshuffle the sequence [~l¢];lo | with
respect to D without introducing deadlock. (Also observe that since do]
remains the last action of the sequence, we have not changed the order of L
relative to R.) We get

#[[di]; [14]; lo1; dot; [di]; [Hli); lol; doll.

5.12. SEQUENCING 73

The PR expansion leading to the circuit of Figure 6 is

diAlir lot,do]
—di A-li—lo|,do| .

Process t is used to connect the two ports of a channel when they are both
active. It is called a “passive-passive adaptor”. The complete circuit is shown
in Figure 5.10.

T e e s = 1
[I
' B
! I
I |
I |
C } C 0—<
| I
[[
z | {
N |
I IS [
L e e e o o o o e o e — — — d

Figure 5.10: An implementation of the passive-active buffer

The passive-active buffer can be compiled directly by introducing a state
variable. The circuit obtained is slightly different. See [9].

74

CHAPTER 5. PRODUCTION RULE EXPANSION

Chapter 6

Case Study: Two
Arbitration Problems

6.1 Introduction

In this chapter, we construct circuits for two difficult control problems in-
volving arbitration among asynchronous events. These examples show how
to introduce the two standard building blocks for arbitration circuitry, the
arbiter and the synchronizer.

The first example addresses the issues of arbitration between guards and
unstable guards. We have already discussed the metastability property of
arbiters. But the realization of a delay-insensitive arbiter raises another issue:
fairness. An arbiter is strongly fair when a pending communication request
is granted after a bounded number of other requests are granted. An arbiter
is weakly feir when a request is granted after a finite number but possibly
unbounded number of other requests. Whether it is possible to construct a
delay-insensitive fair arbiter has been, so far, an open question. It has been
conjectured that delay-insensitive fair arbiters do not exist. In this example,
we prove the existence of delay-insensitive fair arbiters by constructing one.

6.1.1 A Fair-Arbiter Program

The process fsel described in the first part defines a fair arbitration program
between two unrelated inputs. We choose to implement the following simpli-
fied version of fsel:

*[[A — A]~A — skip]; [B - B[~B — skip]] . (6.1)

75

76 CHAPTER 6. CASE STUDY: TWO ARBITRATION PROBLEMS

According to 6.1, when A holds, A will be completed after, at most, one B
action, whatever the current state of the computation is. Hence, the arbiter is
strongly fair towards requests A and B. Assume that 4’ is pending at a certain
point of the computation. By definition of the probe, A is true eventually;
i.e., a finite but unbounded number of B actions can be completed between
the moment qA’ holds and the moment A holds. Hence, the arbiter is only
weakly fair towards requests A" and B’.

Therefore, with this definition of suspension of en action, we can say that
the arbiter is strongly fair towards requests that have reached the arbiter
and weakly fair towards all requests. {We could redefine the suspension of a
communication action X such that gX holds only when the initiation of action
X can be observed by the other process. With this definition of suspension,
we have qA' = A. The arbiter is then strongly fair towards all requests.)

6.1.2 The Compilation

Applying the process decomposition rule, we decompose 6.1 into three pro-
cesses (P1 || P2 § P3). Channels (C, D) between P1 and P2, and (E, F)
between P1 and P3 are introduced.

Pl= +[E; (]
P2= «[DAB— B;D
| DA-B— D

|

P3= *[[F/\E——) A F
H?A—!Z—r F
Il -

Ports D and F are implemented as passive; ports C' and F are implemented
as active. Hence P1 is the standard active-active buffer. The handshaking
expansion of P2 gives:

P2= #[[diAbi— boT; [bi]; bol; doT; [~di); do|
[di A—bi — doT; [=di]; dol
1.

Because bi can change from false to true asynchronously, the second guard
of P2 is not stable; i.e., its value can change from true to false at any time.
In order to make both guards of P2 stable, we introduce the synchronizer

syne = #[[di Abi — w1y [dd]; wl
ldi A—bi — v 1; [~di]; v

11

6.1. INTRODUCTION 77

sync is a standard operator that we have described in Part I. We now have
to find a process, X, such that Since sync is entirely defined, we would like
to be able to perform the inverse operation of ||, or “process quotient”, so
as o compute X as X = (P2 + sync) . A way to perform this quotient is
to remove all actions of sync from P2, and then to check whether the result
fulfills (X [} sync) = P2.

To perform the guotient as suggested, P2 should be extended to contain
all actions of sync, so that the orders of actions are compatible in syne and
in the extended version of P2, (This procedure is explained in [10].} The
extension of P2 gives:

*[[di Abi— wT; [u]; boT; [bi]; bol; do; [-di]; ul; [~u]; do)
[di A=bi— w15 []; dot; [-di]; vl; [w]; dol

-

We obtain for X:

#[[u — bo Ty [=bi]; bol; dot; [-ul; dol
[v = dot; [-v]; dol

The compilation of the first guarded command is facilitated if transition bo | is
postponed until after [-u]. This transformation does not introduce deadlock
since the completion of D does not depend on the completion of B. After this
transformation, the PR expansion gives:

w— bot
wA b dol
biV-ur—do|

= bo |
vt dot
v do| .

The operator reduction, which includes introducing auxiliary variables do/
and do”, gives

© who
(w,—bi) Ado'
v wdo"

(do',do") Vdo .

The circuit is shown in Figure 6.1. The implementation of P3 is identical.

6.1.3 The Circuit

The final circuit, shown in Figure 6.2, is obtained by composing the two iden-
tical circuits implementing P2 and P3 with the circuit of P1. The reshufiled

78 CHAPTER 6. CASE STUDY: TWO ARBITRATION PROBLEMS

do

do”

N =2 B

, -T———>bo
g

di bi

)

Figure 6.1: Implementation of P2

version of P1, consisting of a wire and an inverter, can also be used if it can be
proved that the reshuffling does not introduce deadlock. The circuit shown in
Figure 6.2 includes a minor optimization that eliminates the negated inputs
that are also the output of a fork.

Notice that the solution can be immediately generalized to an arbitrary
number of requests.

6.2 Distributed Mutual Exclusion

The first paper describing this method for the synthesis of asynchronous cir-
cuits from high-level description was presented at the 1985 Chapel Hill Con-
ference on VLSI [8]. The example used to illustrate the method was the
algorithm for distributed mutual exclusion on a ring of processes described in
Chapter 2.

Unfortunately, the circuit presented in the Chapel Hill paper is not entirely

6.2. DISTRIBUTED MUTUAL EXCLUSION 79

~ai

ao * v

eo - Ci

ei Dﬂj‘x u

=bi

Figure 6.2: Implementation of the fair arbiter

correct: A glitch may appear on the wire named z in the paper. The error
is due to my not following the compilation procedure when I defined the
variable z. The error was noticed by many people, and the actual CMOS
implementation of the circuit realized by Andy Fife the same year is entirely
correct.

However, I never took the time to publish the correct solution, and there-
fore the bug has been rediscovered over and over again, sometimes with great
publicity[4]. Since several people have asked me to show them a correct deriva-
tion of the circuit, here it is after five years!

As in the original paper, we observe that the two consecutive D commands,
and the two consecutive I/ commands can both be implemented as the two
halves of a 4-phase handshaking protocol; and therefore we can replace the two
U commands with one single I/ to be implemented as a 4-phase handshaking
protocol.

Next, we decompose process m into two processes A and B as follows:

80 CHAPTER 6. CASE STUDY: TWO ARBITRATION PROBLEMS

h
1H
x
Bl oy
1y
oy
Sw
R

a—

]
i
&,
>
o>
!

Q
A—b s B:Q
—b7;5
—=bl:T

Hugel TEo

The internal channels between A and B are (P, @), (Bt, S), and (Bf,T').

The technique used to obtain A and B is the standard process decom-
position, with one addition. The plain process decomposition would give a
process A with U before Bt, and L before Bf. We have inverted the order of
these actions, since it is semantically irrelevant whether the assignment to b is
the last action of the guarded command provided the assignment follows the
selection command. The reason for this transformation is that the program
in which U/ and L are the last actions of the guarded commands is easier to
implement. This point will be further explained in the compilation of A.

6.2.1 Compilation of A

Since the guards U and I are not mutually exclusive, we are introducing an
arbiter described by the program:

Arb= #[{ui — o' T3 [uil; v |
i — T [l 2L
11

We know that A = (Arb||A’), where 4’ = A:fff

EXERCISE Prove the correctness of the above result. []
Hence:

A" = «[[u' — poT;pilpo |; [~pi}; bto T; [bei]; bto |; [bti]s wo 15 [-u'ls uo |
]]I]E’ — poTi{pils po i [-pil; bfo 15 [Bf]; bfo L; [=bfiilo T; 1T lo |

6.2.2 Mutual exclusion among guarded commands

The main problem in implementing A’ is to enforce the mutual exclusion
between the two guarded commands (GCs). By construction of the arbiter
circuit Arb, we know that—provided that —u" A =’ holds initially——u' v —I'
holds at any time. Hence, the mutual exclusion between the guards of A’ is
guaranteed.

6.3. FIRST SOLUTION 81

However, as soon as u' | is completed, the first GC of the arbiter can
complete, the second GC of the arbiter can start, and consequently, the PR
set implementing the second GC of A' can start firing, even though the first
GC of A’ may not be completed. We shall see that, in order to enforce the
mutual exclusion between the implementations of the two GCs of A', it is
advantageous to postpone v’ | as long as possible. This explains our decision
to modify A such that U/ is the last action of the first GC, and L the last
action of the second GC.

6.3 First Solution

We slightly reshuffle the actions of A’ as follows:

A ={fu' = pot; [pil; pol; [-wils bo1;[bedsuo 15 [-u']; bto |3 [=bti]s uo |
”W'—*POT; [pilipol; {=pils bfoT; [bfililo 15 [=1); bfe L [-hfilile |

‘We first ignore the transitions on bto, bti, ifo, and bfi, and implement the
program:

A =x[[u' - pol; [pil pol; [-wil; wol; [w'); wol
”ﬂl'-*POTs [pil; pol; [~pil; lot; [HU]; lol

Each guarded command is a @J-element. The transitions on bdio, b, bfo, and
bfi are added by just “opening” the wires wo and lo, respectively.

For mutual exclusion between the implementations of the two guarded
commands, the guard v’ is strengthened as u' A —lo, and the guard [’ is
strenghened as I’ A —uo.

6.3.1 Merge

We now have to compose the circuit implementing the first GC with the
one implementing the second GC. This composition is a little more than
mtere juxtaposition because the two circuits use the variables p¢ and po. The
standard way to deal with this case is to compose the two circuits with a
merge circuit.
We replace P with P1 in the first GC, and with P2 in the second GC, and
add the merge process:
*[[P1 — Ple P
[P2 — P2e P

]

82 CHAPTER 6. CASE STUDY: TWO ARBITRATION PROBLEMS

The handshaking expansion gives:

*[[pli = poT; [pi]; ploT; {-pli); pol; [-pli]; plo}
]{]p% — pol: [pil p2o1; [p2i); poi; [-p2i]; p2o]

The production rule expansion gives:

pliVp2i pot
piApli— ploT
~pli A mpis po |
—pi plo|
pi A p2i— p2o1
—pi— p2o] .

The operators are the or-gate (pli,p2i) ¥V po, and the two asymmetric
C-elements (pi; pli) aC plo and (pi; p2i) eC p2o.

6.3.2 Circuit for A’

Composing the merge circuit and the circuits for the two guarded commands
lead to an implementation of A’. But we make two observations. First, the
asymmetric C-elements in the merge are not needed in this case. Second, and
meore importantly, we realize that instead of merging the two circuits after the
two Q-elements, we could merge them before the QQ-elements so that the two
circuits could share the same Q-element. This transformation is formalized
by the following program decomposition. We have A’ = {A1||@), with:

Al = #[[w' A=lo = po’ T; [pi']; bto1;(btilsuo 15 [=u'];po’ |5 [=wi']; bto |;[-bti];uo |
Hﬂz’ Ao — po" 15 [pi')bfo 15 Bl lo T [HVpo” 15 [pi']s 0o L5 [=bfilslo |

Q = *[[po' V po"]; pol; [pi}; pol; [-pil; pi' 1: [-po’ A —po”]; pi' |
The first guarded command of Al is compiled as:

w' A =low po' 1
pi' A po'— bto |
bti— uol
loV—u'— po |
pi' = blo |
—bti— uo |

6.3. FIRST SOLUTION 83

The operator reduction gives:

(u',=lo) Apo'
(pi';po’) albto
bt w uo

The compilation of the second GC of Al is similar.

6.3.3 Compilation of B

The compilation of B is identical to that of the original paper. The hand-
shaking expansion of B with a slight reshuffling of the actions in the second
GC gives:

B =#{[giAb— qgot;[giiqo]
lgi A =b — ro1;[rt];goT;[~gi};rol;{-ril;qol
[si — bTiso1;1-si];s0]
[ti — b lito1;]ti)ito]

)

We first observe that the mutual exclusion between the guards and between
the guarded commands is guaranteed. The production rule expansion gives:

giAb—goT
bA —gi— go|
gi A=b— ro]
ri gol
~gi o
—-bA=ri—go|

The conjunct b is added to the guard of the first PR, for mutual exclusion
with the second GC. A better strengthening of the two rules that reset go is
=gt A i > go |.

Combining all PRs relative to go gives:

qgiAbVTi— goT
-qi A ris go |

The other operator is (gi; —b) &C ro. The production rule expansion of the
last. two GCs is straightforward. It gives:

si— b1
ti—b|
siAb— 507
-5t $0 |
A =b—to]
—ti— to]

84 CHAPTER 6. CASE STUDY: TWO ARBITRATION PROBLEMS

The set of operators is:
(Si; “Ft?:) i b
(si;b) eC s0
(ti;-b) al to

The last two operators can be replaced with the and-gates (s, b:) A so and
(ti,mb) A to by the usual symmetrization. The flip-Hop can be replaced with
the C-element (si, —t7) C b, also by symmetrization.

The complete circuit is shown in Figure 6.3.

6.4 Exercise: Implementation without reshuf-
fling

Can we implement the program of A directly without postponing U and L?
We have to implement the following version of A:

A=+[[U - P;U; Bt
IT— PiL;Bf
1]

B is unchanged.

Al = (ArbliA"),
where Arbis unchanged. A’ is slightly reshuffled.

A" = +[[u — pol;[pil;uo T [~w']; po l;[—=pi]; wo |; bio 1; [bti]; bio |; [-bi]
ﬁ]l’ — poT;[pillo 15 [~ po |; [~pililo L bfa T3 [bfi]; bfo L; [-0fi]

Apart from the opening of the uo wire for the (po,pi) connection, the first
guarded command is just the passive-active buffer:

*[[w']; wo 15 [~u']; wo |; bto 1 [bti]; bto | ; [-btd]]

The rest of the compilation is left as an exercise to the reader.

To

6.4. EXERCISE: IMPLEMENTATION WITHOUT RESHUFFLING 85
bt, 3; t;
te bti S
R
A F
C
q:
—>
l; 4
— !
C A
lo A 4

Figure 6.3: Circuit for a server

86 CHAPTER 6. CASE STUDY: TWO ARBITRATION PROBLEMS

Chapter 7

Implementation of the
Lazy Stack

7.1 Introduction

The design of the stack will be used to explain the general method for imple-
menting communications that involve passing messages. The method relies
on the time-honored *divide-and-conquer” principle: We first construct the
so-called control part of the program, which is the original program in which
messages have been removed from each communication action, and all arith-
metic operations have been replaced by procedure and function calls . We
then combine this control part with a data path, which is a collection of pro-
cesses implementing the assignment parts of the communication actions and
the functions and procedures implementing arithmetic operations.

7.2 The Control Part of the Stack

We assume that the stack is empty initially. We introdnce the channel (¢,¢'),
so that F' can be called from within F by process decomposition. We get

E= #l[in — in?z; ¢
| out — get?z; outlx
1]

F = «[[t/ Ain — putle; inlz

[t A out — outlz; t!

Il

87

38 CHAPTER 7. IMPLEMENTATION OF TIE LAZY STACK

The control part of the stack consists of programs F and F, from which
message communication has been removed. We get

E= #[[in—in; t
[out — get; out
1

F= «[[¥ Atn — put; in
[Aout — out; t'

1.

In the handshaking expansion, we let the choice of active and passive com-
munications be dictated by the occurrence of the probes. (However, we will
return to this choice later.) We get

E = «[[ini —inoTl; [~ini]; tno|; tol; [ti]; tol; [-ti]
[outi — geto1; [geti]; getol; [—geti]; outoT; [noutil; outo]
1l

F = #[[ti’ Aini — putoT; [puti]; puto |; [~putil; ino{; [~ind]; ino
[" A outi — outoT; [mouti]; outo |; to' 15 [-ti']; to' |

I

7.2.1 Compilation of £

The first guarded command, E1l, is a standard passive-active buffer. The
second guarded command, E2, is a standard Q-element. The implementation
of F must combine the implementations of E1 and E2 in a way that enforces
mutual exclusion between the execution of E1 and that of E2.

Since the execution of in and that of out are mutually exclusive, it suffices
to guarantee that when in is completed in E1, E2 cannot start until ¢ is
completed. On the other hand, we are sure that E1 cannot start before £2
is completed because outo | is the last action of E2.

In order to prevent E2 from starting before F1 is completed, we have to in-
troduce an extra variable, or reshuffle the handshaking expansions, We choose
to introduce the variable z (initially true) in the handshaking expansion of
E1, and we strengthen the guard of E2 with z. We get

El=zAini —inol; z|; [-z]; [Hind); dnol; to1; [t); tol; [ti]; 27,

E2 = —ti Aouti Az — getol; [geti]; geto|; [=geti]; outo1; [-outi]; outo] .

It turns out that our choice for variable z is quite fortunate as it is already
an internal variable of E'1, as indicated on Figure 7.1.

7.2. THE CONTROL PART OF THE STACK 89

ini se—

Figure 7.1: Implementation of the first g.c. of E with variable z

Now, E2 cannot start until z | is completed, i.e., until E1 is completed. For
symmetrization, we also weaken —outi as —outiV-z. Hence, mutual exclusion
is enforced by replacing input outi with the and-operator (outi,z) A outi’ in
the Q-element implementation of £2. This gives the circuit of Figure 7.2 as
an implementation of F.

7.2.2 Compilation of F

The compilation of the first guarded command F1 of F is identical to that of
E2 with the appropriate change of variables. The compilation of the second
guarded command F2, however, can be simplified by reshuffling. We reshuflle
the handshaking sequence of t' in F2 as follows:

ti' A outi — outo?; to' Ty [-ti' A —outi]; outo|; to'|

The validity of this reshuffling stems from the fact that we do not reshuffie the
initiation or the completion of action t' since [t¢'] and to’ | are not reshuffled
and the reshuffling of the middle two actions of t' does not introduce dead-
lock. The above sequence compiles immediately into the “forked” C-element
(ti’, outi) C (outo,to’). The reshuffling guarantees that F1 cannot be started
before F2 is completed.

90 CHAPTER 7. IMPLEMENTATION OF THE LAZY STACK

r
]
ini : to
:
1
ino :)
H
1
[
1
| P
geto

outi

outo

Figure 7.2: Implementation of E

The channels in and out are used both in E and F, so we need to merge
the local copies of ¢n and the local copies of out in a standard way that we

do not describe here. The resulting circuit for the control part of the stack
element is shown in Figure 7.3.

7.3 Implementation of the data path

We now have to extend the implementation of the control part S2 so as
to obtain an implementation of the whole program S1. We want to leave
S2 unchanged by introducing a data path process, P, such that the paraliel
composition of 52 and P implements S1.

The channels in, out, get, put of S2 are renamed in’, out’, get’, put’. P com-
municates with 52 via in’, out’, get’, put’ and with the environment via in, out,
get, put. (See Figure 7.4.)

Let € be a channel of 51, and C' be the renamed channel of 52 to which C

7.4. IMPLEMENTATION OF CHANNEL INTERFACES 91

cotresponds. For (§2 || P) to implement S1, each communication on € must
coincide with a communication on C; i.e., P must implement the so-called
channel interface process

Ic= #[CeC'].
Hence, P has to implement the four channel interfaces:

*¥[in' e inlx)

[out’ o outlz]
[get’ e get?x]
= put’ o putlz] .

7.4 Implementation of Channel Interfaces

There are four types of channel interfaces, depending on whether the port is
active or passive, and whether the communication is an input or an output.

7.4.1 Input Actions on a Passive Port

We want to implement the interface Ie for action C'7z on the passive port C.
Ic communicates with §2 by the active port ¢, and with the environment
by the passive port D. Furthermore, in the standard double-rail encoding
technique, the two-wire implementation {cf,co) of C has to be interfaced to
the three-wire input port D in which the two input wires, dil and di2, are
used to encode the two values of the incoming message. {See Figure 7.5.)

I- has to implement an interleaving of the three sequences:

Sc = #[ci’ 13 [co]; ' |; [eo']]
Sp = #[[dil v di2]; doT; [~dil A —di2]; do |}
Sx=#[[dil =z T; [z] | di2 >z |; [-z]]] .

We first interleave sequences S and Sp so as to implement C’ e D:

[dil Vv di2]; ¢i' 13 [co]; doT; [~dil A =di2]; i |; [-eo']; dol] . (7.1)

Next we interleave {7.1) and Sx. The interleaving has to ensure that the
assignment to z is inserted after [co’] so that, when the assignment to z is
performed in the datapath, communication action C' has indeed been started
in the control part. This interleaving is the final specification of the interface
Ie: :

«[[dil v di2]; i’ T3 [eo’ Adil — z 15 [2]]eo Adi2 — x |; [~a]];

doT; [~dil A—di2]: ei’ |; [-eo'] dol]. (7.2)

92 CHAPTER 7. IMPLEMENTATION OF THE LAZY STACK

We can implement (7.2} directly as follows:

Bl Vdi2— ei' 1

co' Adilm 7

co' ANdi2— z |
dilAzVdi2 A\-z— do]
~dil A ~di2 e ci |
—ico’ — do |

We can aslo decompose (7.2) into standard operators. We first decompose
(7.2) into the two sequences:

s([dilV di2]; o' 1 [~dil A —di2]; ci' |] (7.3)
and
*[co Ndil — z7; [z]; do¥; [-eo’]; do)
leo' Adi2 — z |; [=z]; doly [ned]; dol {7.4)
1.

Sequence {7.3) is realized by the operator (dil,di2) ¥ ci’. We factor (7.4}
so as to isolate the register part:

(eo',dil) aC xl= *{[co’ Adil]; z1%; [eo']; x1]]
(co',di2) aC x2= #[[co’ Adi2}; 227; [-eco']; 22]]
(z1,z2) reg (z,do} = #[[zl = & T; [z]; doT; [-2l]; do]l
|22 — z|; [~z]; do1; [m#2]; do)
I-

The implementation is shown in Figure 7.6.

7.4.2 Input Actions on an Active Port

For port C active, the communication variables of the interface I'c remain the
same. But now the handshaking expansions of C' and D are different, since
' is passive and D is active. We get:

Sc = #]led’]; ci' 15 [—eo]; e’]
Sp=*[do1; {dil Vv di2]; do|; [~dil A ~di2]]
Sx=x#[dit -z T; [z] | di2 =z |; [=2]] .

(Observe that Sy is not changed.)
An interleaving of S¢ and Sp that implements C”" D is the interleaving
corresponding to two wires:

s[lcd’]; do 1y [dil v di2]; ' 15 [neo']; dol; [~dil Adi2]; e’ |] .

7.5. OUTPUT ACTIONS 93

As to the implementation of the assignment to z, we now observe that,
since C and D are active, there is no risk that the assignment to = be started
before C is. The interleaving obtained is:

*[[co’]; doT; [dil > 21| di2 — = [];
ci' T; [ned’]; dol; [~dil Adi2]; i l],

which can be factored into the wire

(7.5)

(co’ w do) = *{[co]; dot; [-eo']; dol]
and the register

(dil,di2) reg (z,ci’) = #[[dil =« 13 [z]; e’ T} [=dil]; i’ |
[di2 — z §; [-z); i’ 15 [di2); e’ |
i

The implementation of the interface is shown in Figure 7.7.

7.5 Qutput Actions

In the case of an output, like outlz or putlz, the implementation turns out
to be the same for passive and active ports. Given the same nomenclature as
in the input case, port D is now implemented with two output variables, dol
and do2, and one input variable di. Port C’ is not changed. The rest of the
derivation is straightforward and is left as an exercise for the reader. It leads
to a wire and a read operator, which we have introduced in the implementation
of the register.

diwci= #[[di]; ¢i' T; [~di); e’ 1]

(eo',z) read (dol,do2) = *[[z A eco’ — dol1; [-co']; doll
|mz Aco' — do21; [-eo']; do2]

1

The only difference between the active and the passive cases is that, in the
active case, the read is activated first. In the passive case, the wire is activated
first. The circuit is shown in Figure 7.8.

7.5.1 Active Input and Passive Output

A somewhat surprising result of this implementation of input and cutput com-
mands is that, contrary to common belief, it is simpler to implement input
commands with active ports than with passive ports. The gain is quite im-
portant: For n bits of data, the active implementation saves 2 X n asymmetric

94 CHAPTER 7. IMPLEMENTATION OF THE LAZY STACK

C-elements and n or-gates. On the other hand, the implementation of output
actions is the same for active and passive ports.

Therefore, we shall always implement input actions with active ports.
When the input port is probed, like in in the stack example, we shall use
a slightly more complicated handshaking protocol that makes it possible to
probe an active port. A simple version of this protocol consists of replac-
ing the single passive communication, say in, with two communications inl
and in2, with inl passive and probed, and in2 active and used for the input
action. The two handshaking expansions are usually interleaved as follows:

int — ...tnol; [nini; ino|
is replaced with
inli — ...inloT; [in2{]; in2071; [~enlil; inlo]; [~in2i]; in2o

(In the implementation of the microprocessor, we have used a more efficient
version of this protocol.)

7.6 The Complete Circuit for the Stack

The sharing of register x by ports in and get has to be implemented either
by a multiplexer or by a multiport flip-flop. Since only two ports share the
register, we choose to use a dual-port flip-flop. The complete data path is
shown in Figure 7.9.

The complete circuit obtained by composing the different parts together
is shown in Figure 7.10. An important optimization has been added to the
design. It concerns the implementation of the second guard of E:

out — get?z; outlz.

We observe that the value of z involved in the second action (outlz) is the
same as the value of = involved in the first action (get?z). We can therefore
replace it with

‘out — outl{get?).

The handshaking expansion is:

outi — geto T; [getil — outol 1geti2 — outo23]; [—outi);
geto |; [getil — outol ||-geti2 — outo? |]

The implementation is the three wires outi w geto, getil w outol, and
geti2 w outol.

The above modification leads to a significant simplification of the circuit
since we can eliminate a D-element, and, for each bit of the dale peth, we

7.6. THE COMPLETE CIRCUIT FOR THE STACK 95

can eliminate an IF-element and replace the multiport fip-flop with a simple
flip-flop. The chip we have fabricated includes this modification, as well as
the optimization that consists in making input port 2n active.

CHAPTER 7. IMPLEMENTATION OF THE LAZY STACK

96

geto

geti

puto

)
|/

lllll

lllllllll

- puti

-

outi v

outo

ini

ino

Figure 7.3: The control part of the stack element

7.6. THE COMPLETE CIRCUIT FOR THE STACK 97

in

52

‘;«t‘

put’

get'

in ——————

QUL ——smiant

—t— Pt

————— get

Figure 7.4: Adding the data path

98 CHAPTER 7. IMPLEMENTATION OF THE LAZY STACK

dil

- ci' 4]
do -———-1 | co' col 52
di2

Figure 7.5: Channe! interface for input port

100 CHAPTER 7. IMPLEMENTATION OF THE LAZY STACK

di - Cf

-t co
"
do2 ‘CD_‘_

Figure 7.8: Output action interface

7.6. THE COMPLETE CIRCUIT FOR THE STACK 101

ini' ino' outo' puto’ geti'
' | J
outo? —= { ;_] rc M puto2
outol [‘ - e)—-- putol
N x
ac f £l i - geli2
ni2 s—- X X
—~ if t={ mFF}b=1 if
. .
aC - ‘! -t t<—1—-—< getil
Nl w—
inog -=

Figure 7.9: The complete data path

102 CHAPTER 7. IMPLEMENTATION OF THE LAZY STACK

outi geto

1/
¢ ?
= putse
insi |

ino putsi
inso puti
ini2 puto?
inil putol

outol ——G'-G: getil

Figure 7.10: The complete circuit for a one-bit stack element

Chapter 8

Asynchronous Adders

8.1 Introduction

The purpose of this chapteris to describe the design of an asynchronous ripple-
carry adder as an illustration of the transformations and design decisions that
play a role in the construction of asynchronous VLSI circuits for arithmetic
functions.

8.2 Function Evaluation

The evaluation of a function, say, F(X), usually appears in a program in
the form Y := F(X), ie, the function is evaluated and its value is assigned
to a variable ¥. The first program transformation we perform consists of
separating the function evaluation from the assignment. Let P be the program
containing the assignment Y := F(X). We apply the transformation:

P (PR "X |(D/CIF(X)|+[C?Y))
or, alternatively:
Py (Py=FX|(D/CrY)|HCIF (X))

(C and D are channels introduced for process decomposition. We use the
same global name for the two ports of the same channel.)

The two alternative decompositions are equivalent. We leave it to the
reader to check that whatever decompeosition and handshaking expansion are
used, they will contain the process *[C!F(X)] with C passive, or a hand-
shaking expansion equivalent to that process up to the renaming of variable
et.

103

104 CHAPTER 8. ASYNCHRONOUS ADDERS

First, we briefly discuss the general approach to the implementation of
this process. The handshaking expansion has to be a generalization of the
handshaking expansion of the bare passive communication action C"

*([cz]; cots [=ei]; col]

with ¢i and co boolean, and the environmemt implementing either the lazy-
active protocol:

*[[-eol; ci s [eo]; cil]
or the usual active protocol. Initially, ¢i and co are false.

The generalization requires that the single boolean co be replaced with a
set C of booleans, and the two assignments co T and co | with two multiple
assignments to the elements of C, denoted C {} and C |}, respectively.

The two predicates —co and co as used in the wait-actions of the environ-
ment have to be replaced by two general predicates z(C')—for “zero”—and
v(C)—for “valid”—, respectively, such that —2(C)V—-v(C} is invariantly true.
A value of C for which v{C) holds is called a valid value. A value of C for
which z(C) holds is called a zero value.

TFurthermore, the two assignments C ft and € | fulfill the requirements:

{z(C)}C 1 {»(C)}
and

{v(C)}C L {2(C)},
so that the protocol between the process and the environment can now be
described by the two handshaking expansions:

#lleil; € @ [neils C 4]
and
A2(C) ity (O eil] -

Initially, ¢i is false, and 2(C) holds.

8.2.1 Delay-Insensitive Codes
The code for ' must fulfill the following requirements.

o All values that can be transmitted on the channel, typically all integers
from 0 to 2¥ — 1 for some given N, can be coded as valid values, and
at least one zero value of C can be coded such that —z{C) v —(C) .

¢ When C is assigned a valid value by the concurrent assignment C {, no
intermediate value taken by C during the assignment is a valid value.
(Otherwise, the wait action [v{C)] of the environment could be com-
pleted too early.)

8.2. FUNCTION EVALUATION 105

e Symmetrically, when C is assigned a zero value by the concurrent as-
signment C |}, no intermediate value taken by C during the assignment
is a zero value. (Otherwise, the wait action [2(C)] of the environment
could be completed too early.)

o Finally, a “side-effect” of the assignment C 1} is to assign to C a (valid)
value whose numerical interpretation, say v(C), is such that v(C) =
F(X).

8.2.2 Dual-rail Code

There are many codes for C that fulfil the above requirements. A simple and

popular one is the so-called dual-rail code. If C' represents an N-bit integer,

each bit is coded with twe boolean variables. Bit ¢ is coded with ety and

cfr: cty is the “true bit” of ¢p and is set to true when ¢z has to be set to true,

cfy is the “false bit” of ¢ and is set to true when ¢, has to be set to false.
We have:

z(C) = (/\k i —ety A e fy)

v(C) = (/\k ety A=efy Vefr A -er)
v(C) = (Vk i e = cfy)

(In this paper, all quantifications range from 0 to ¥ — 1, with N > 0.) Since
(A ki (octr V oefy)) is maintained as an invariant, v(C) is implied by the
simpler condition:

(/\k ety Vefi) .

Observe that there is only one zero value of C, namely, A & :: —ety A ey,
and there are many values of C' that are not valid and not zero.

8.2.3 Stable versus Communicated Inputs

The implementation of C1F{X) described so far relies on the assumption that
when ¢t holds, the input X Las the valid value for the evaluation of ¥ and
that X is not changed through the evaluation of F. We say that the input is
stable.

An alternative solution consists in having X being received as a message
on channel C, and F(X) being sent as a message on the same channel: C
implements the swap of X and F(X). In that case, the input X has to go
through the valid/zero cycle and is dunal-rail encoded {or encoded with any
other delay-insensitive code). We say that the input is communicated. The
handshaking expansion of C1F{X) is of the form:

T{w(X)); O X)) C U (8.1)

106 CHAPTER 8. ASYNCHRONOUS ADDERS

The handshaking expansion of 8.1 requires that all boolean inputs of X
be valid before any elementary assignment of C 1t is started, and that all
boolean inputs of X be zero before any elementary assignment of C' |} is
started. Such an ordering requirement is unnecessarily strong. The following
weaker requirement—which we call the weak handshake rule for communicated
inpul—is sufficient:

For each boolean = of input X, there is at least one elementary assignment
¢ T of C 1y such that {v(z)}e T, and there is at least one elementary assignment
¢’ | of C | such that {z(z)}c' |.

Hence, each boolean input variable = is part of the hanshaking sequence:

(@) s (o)) /1] (8.2)

In the following implementation of the addition, the operands of the addition
are assumed to be stable but the carry inputs are communicated.

8.3 Binary Addition

We want to implement the process *[S!(A + B)]. Its handshaking expansion
is:

*lsil; § 1 {v(8) = v(A)+v(B)}; [~=]; S U] . (8.3)

A, B, and § are N-bit integers. Inputs 4 and B are assumed to be stable,
but the sum & is dual-rail encoded.

Next, we need to refine the postcondition #(S) = v{A) + »(B) in terms
of relations between each bit of S and the corresponding bits of A and B.
There are many ways to describe these relations, each corresponding to a
particular addition algorithm. Here, we choose the algorithm that is usually
called “ripple-carry adder.”

8.3.1 Ripple-carry Addition

The value of bit s;, of S can be expressed as a function of the bits a; and by
of A and B, and of the carry-in bit ¢;. More precisely, the postcondition of
the addition can be expressed as:

=g A (Vk :: sumy)
where each sumy, is the conjunction of the three predicates:
(map A —by) = (sk,ce41 = ci, folse)

({Lk A bk) = (Sp,Cpp1 = ck,t'rue)

(ar # br) = (85, Chs1 = Ck, Ck)

8.3. BINARY ADDITION 107

The computation of bit s; of the sum requires the previous computation
of carry bit ¢, and therefore also produces carry bit cr41. Hence, the carry
bits also have to be dunal-rail encoded and used as communicated variables, ie
we will have to add the waits [v(cx)] and [z(ci)] in the handsaking expansion.

We can easily design the program addy that establishes sumy. Iis inputs
are aj, and by, and the carry-in bits ct;, and cfy. Its outputs are st and sfy
and the carry-out bits ctpyq and cfp41. We get:

addy, = [“ﬂak A by — ([Ctk — sty Tl]cfk — 5fy T]) ” cfrr1 T
lap Ay — (fcte — st Tefr — sfe1]) || i T
farp # by — [eti — sfeT,cteqr Thefu — ste 1 efit1 7]

(The comma is used as an alternative to || for the parallel composition of
simple assignments.)

8.3.2 Handshaking Expansion

We now replace S ff with addy, in (8.3) and implement § |. This refinement
gives:

*[lsls (|[k = addi); [msils (k2 ste s fi L et b efier 1] - (8.4)

Furthermore, the first carry-in bits are generated by the program:

*[[S‘& = ¢ty l,Cfg T
[-si — cto liefol .

i

Next we have to enforce the weak handshake rule of (8.2) for the inputs cy.
A straightforward solution is:

*[[st]; ||k = [v(ck)]; addi); [-mi/\(/\k mz(ee))]s {1k = st Losf |, ctir L efrin 1))
(8.5)
Unfortunately, this solution is entirely sequential since the expressions
v(cx) become true in the order of increasing k. (Observe that including the
waits for v(cr) in the wait for si, as [s¢ A (Ak = v(c))], would result in a
deadlock since only v(cg) holds initially.) But, we can use the fact that the
computation of each bit sy in addy, requires that v{ci) hold. We can therefore
remove the explicit wait [v(ey)} from (8.5) and still fulfill the weak handshake
rule. Now, the upgoing part of the computation of a carry bit can proceed
without waiting for the previous carry bit when gy = b. Concurrency in the
computation of the carry bits also introduces concurrency in the computation
of the sum bits. However, the downgoing part of the computation of the

108 CHAPTER 8 ASYNCHRONOUS ADDERS

carry bits is still sequential since the wait for (A% 1 z(cr}) still precedes all
downgoing assignments. We improve this part as follows,

We first apply a transformation rule that takes the parallel quantification
% : out of the process. This transformation results in replacing the single
process with N parallel processes:

(|| == *{[s2]; addr; [—si A z(ck)]; strl,sfe Lctisr Lefes 1)) (8.6)

Second, we replace the downgoing sequence of (8.6)

[=s2 A z(ck)]; ste losfe L cteqr Lefogn |

with the sequence

[nsi — clrqr Lefuar U |} [Dete A nefy — st |ysfe l]

in which we have implemented z(cy) as —ety A —cfy. The weak handshake
rule is still obeyed. We get the final handshaking expansion:

(W #llsd)s addy; ([t = ctiea | efirr 1] || met Amefi — st L, sfi D)) -

(8.7)
Now, the downgoing part of the carry-out generation can proceed without
waiting for the carry-in; and, as we mentioned before, the upgoing part of
the carry-out generation can proceed without waiting for the carry-in when
ar = by. This optimization of the carry-chain length is the main characteristic
of this type of adders.

8.4 Implementation of the Adder Cells

Each program of (8.7) is called an edder-cell. For the rest of the implemen-
tation of the adder-cells, we can omit the subscripts & and k£ + 1. The input
variables are a, b, and ct and cf for the carry-in bits. The output variables
are st and sf for the sum bits, and dt and df for the carry-out bits.

We first simplify the program of add by combining the guards and factoring
the paralle! composition. We get:

add = ([(maA-b)V ((a#b)Acf) —df 1
(aAb)V{(a £ DY Act) —dit

I
|
[t Afa=b)VefAlas#b)— st
[}c fAla=bVetAla#tbd) — sf1

8.4. IMPLEMENTATION OF THE ADDER CELLS 109

The complete program for an adder-cell is:
¥[[st]; add; (J-si — dt |, df] || [Det A-ef — st |, sf |])] (8.8)

Next, we include the wait [si] into the guards of edd, ie a guard G becomes
G A st
The program of an adder-cell becomes:

adder — cell = *[(](sz/\—na/\-ub) ((a#b)Acf)—df7
[(siAaAb)V((asb)Act) —dt]

]
et Afa=b)VefAla#b) — st
lefAla=b)vetn(a# b - sfT

]); ([t — dt |, df [} || [met A=ef — st |,sf]])

We have optimized this transformation by adding si only in the terms of the
guards of add that do not contain ¢t or ¢f since we can prove that

(cty = si) A (cfr = si) (8.9)

holds for all k. The proof of (8.9) is by induction on %: For the base case
k=0, (8.9) holds obviously because of the program:

*{ [Si s etg l,cfo T
[—si— cto | efo] .

Il

For the induction case, we prove that if (8.9) holds for % it holds for &+ 1.
The structure of the guarded commands is such that (dt = (si V cf)) A (df =
{si V ¢f)) holds as a postcondition of edder-cell. But since, by the induction
hypothesis, (ct = si) A (¢f = si) holds for k, we have established {dt =
si) A (df => si). Since di for cell k is ct for cell £+ 1, and similarly for df and
cf, (8.9) is established for & + 1.

8.4.1 Production-rule Expansion

We add a minor modification: The guards of df T and di T are equivalent to
{and can be replaced with):

(st Aoa A=bYV (maV —b) Acf

and
(sinanb)V{aVvb)Act

110 CHAPTER 8. ASYNCHRONOQUS ADDERS

respectively. The production-rule expansion is now straightforward:

(siA=aA=b}VefA{-aV=b) — dft
(siAaAB)VetAlavh) — dtT
asi o~ dt],df |
(ctha=Db)V(cfAa#b) +— st]
{(cfAe=b)V(ctAha#tb) — sf1
~cth—-cf — st],sf]

8.5 Implementation Issues

The CMOS gates for dt and st are shown in Figure 8.1, We use dynamic logic
for these state-holding gates since there is no data-dependent delays between
the upgoing and downgoing transitions. As usual, the logic is inverting, and
thus the gates produce the complementary signals dt_ and st. of d¢ and st
Adding an inverter at the output of each gate that produces di_ is an expensive
golution since the carry chain may include up to N inverters in series in
addition to the N carry gates. A better solution consists in alternating gates
that produce di_ and df_ (the even-numebred bits) with gates that produce
dt and df (the odd-numbered bits).

Finally, we can simplify the design of the adder-cell 0: We can eliminate
inputs ety and ¢fy since cty is identically false and ¢fy = si. The simplified
production rules are:

siA(~aV-b) w— dff
sinfavb) — dif
—s = dt],df |
cfA(a£b) — st
cfAa{a=b) ~ sf1
-ef — st],sf]
Acknowledgments

Acknowledgement is due to my student Tony Lee for his comments and for
designing several beantiful asynchronous ALUs that were an inspiration for
this paper.

8.5. IMPLEMENTATION ISSUES 111

cf:_q

oy

a2
6 }_5_5_, L&

et — ‘EI_ F
st _,_d
dt_
a— e_| F_E
E— - ct
si-—i

Figure 8.1: CMOS implementation of the true bits of the sum and carry

112 CHAPTER 8. ASYNCHRONOUS ADDERS

Chapter 9

The First Asynchronous
Microprocessor

9.1 Introduction

In this chapter, we describe a delay-insensitive microprocessor my students
and I designed at Caltech in the fall of 1988. It is the first delay-insensitive
ot even asynchronous microprocessor ever designed. It is a 16-bit, RISC-
like architecture. The version implemented in 1.6 micron SCMOS runs at 18
MIPS. The chips were found functional on “first silicon.”

As we explained in Section 2.8.6, the processor was first specified as a
sequential program, which was then transformed into a concurrent program
so as to pipeline instruction execution. The circuits were derived from the
concurrent program by semantics-preserving program transformation.

The design was undertaken as a large-scale application of the high-level
synthesis method for asynchronous VLSI that we have developed in these
notes.

The results of the experiment can be summarized as follows. First, it is
possible and advantageous to describe circuits, even of the size and complexity
of a microprocessor, in a high-level program notation. With the exception of
the ALU function, the complete program takes less less than two pages—Ilet
us say that a complete description including all functions would take approx-
imately three pages. The transformations performed on the initial sequential
program to introduce pipelining show that the notation is appropriate for a
designer to work with efficiently, since all important design decisions can be
made at the level of source code.

Second, it is possible to derive the circuit from the program by applying
systematic semantics-preserving transformations, and to obtain a circuit that

113

114 CHAPTER 9. THE FIRST ASYNCHRONQOUS MICROPROCESSOR

is correct on first silicon. The compilation procedure is not described here,
but can be found in several papers, in particular [6].

Third, the results of the experiment demonstrate that the often accepted
“fatalities,” that formal design methods and asynchronous techniques lead
to inefficient solutions, are simply myths fueled by the natural resistance to
change. Not only is the processor surprisingly small and fast for a first design,
but it also exhibits a robustness to parameter variations that goes beyond our
expectations and almost beyond our understanding: One of the two versions
seems still to function with a voltage value of 0.35V for the VDD! Maybe the
biggest surprise is the very low power consumption of the chips, which makes
this design style ideally suited for nuse in highly concurrent architectures where
a large number of chips are tightly packed.

3.2 The Processor: The Test Results

The processor has a 16-bit, RISC-like instruction set. It has sixteen registers,
four buses, an ALU, and two adders. Instruction and data memories are
separate. The chip size is about 20,000 transistors. Two versions have been
fabricated: one in 2pum MOSIS SCMOS, and one in 1.6m MOSIS SCMOS.
{The dimension refers to the minimal width of a wire.} On the 2pm version,
only twelve registers were implemented in order to fit the chip on the 84-pin
6600um x 4600pm pad frame.

With the exception of tsochronic forks, the chips are entirely delay-insensitive.
The circuits use neither clocks nor knowledge about delays. The only excep-
tion to the design method is the interface with the memories. In the absence of
available memories with asynchronous interfaces, we have simulated the com-
pletion signal from the memories with an external delay. For testing purposes,
the delay on the instruction memory interface is variable.

In spite of the presence of several floating n-wells, the 2um version runs
at 12 MIPS. The 1.6pm version runs at 18 MIPS. (Those performance fig-
ures are based on measurements from sequences of ALT instructions without
carry. They do not take advantage of the overlap between ALT and mem-
ory instructions.) Those performances are quite encouraging given that the
design is very conservative: It uses static gates, dual-rail encoding of data,
completion trees, efc.

Only two of the 12 2um chips passed all tests, but 34 of the 50 1.64m chips
were found to be functional. (However, within a certain range of values for the
instruction memory delay, the 1.6um version malfunctions. We will return to
this phenomenon, which is related to the implementation of isochrouic forks.)
It takes less than 700 instructions to test the processors for stuck-at faults.
The program counter is the only part that was not tested exhaustively because
the memory used for the test did not contain the address required for testing

wn "U""g

9.3. SPECIFICATION OF THE PROCESSOR 115

the most significant bit of the program counter.

30 -
. TT°K, 21
25 -
0°K, 1.6um

20
15 | 300°K, 2um
10

5 -

0 i 1 1 L L 1 1

0 2 4 6 8 10 12

Figure 9.1: MIPS as a function of VDD

‘We have tested the chips under a wide range of VDD voltage values. At
room temperature, the 2pm version is furctional in a voltage range from 7V
down to 0.35V! And it reaches 15 MIPS at TV. We have also tested the chips
cooled in liquid nitrogen. The 2pm version reaches 20 MIPS at 5V and 30
MIPS at 12V. The 1.6pm version reaches 30 MIPS at 5V. Of course, the
measurements are made without adjusting any clocks (there are none), but
simply by connecting the processor to a memory containing a test program
and observing the rate of instruction execution. The results are summarized
in Figure 9.1. The power consumption is 145mW at 5V and 6.7mW at 2V,

9.3 Specification of the processor

The instruction set is deliberately not innovative. It is a conventional 16-bit-
word instruction set of the load-store type. The processor uses two separate
memories for instructions and data. There are three types of instructions:
ALU, memory, and program-counter (pc). All ALU instructions operate on
registers; memory instructions involve a register and a data memory word.
Certain instructions use the following word as offset. The only important
omissions, those of an interrupt mechanism and communication ports, are
ones we found to be unnecessary distractions in a first design.

116 CHAPTER 9. THE FIRST ASYNCHRONOUS MICROFROCESSOR

MC
D E
FETCHISA EXEC :C
h
pCl PCA Xs
Xof Ys MDs
Xpe ZAs [MpI
Ype ZWs
ZRs I
H‘ .
Xbus) 4)
Ybus 4 i} 4 3
ZAbus L

b=t
[]

3
i
b
ZMbus $ K $
—

S

——

PCADD REGISTERS ALU - MU

Figure 9.2: Process and channel structure

9.4 Decomposition into Concurrent Processes

The program of Section 2.8.6 is further decomposed into a set of concurrent
processes. In this program we have used a restricted form of shared vari-
ables. The control channels Xs, Ys, ZAs, ZWs, ZRs, and the bus ZA are
one-to-many; the buses X, Y, ZM are many-to-many; the other chanrnels are
one-to-one. But all channels are used by only two processes at a time. The
structure of processes and chanuels is shown in Figure 9.2. The final program
is shown in PFigures 9.3 and 9.4. Process FETCH fetches the instructions
from the instruction memory, and transmits them to process EXEC which
decodes them. Process PCADD updates the address pe of the next instruc-
tion concurrently with the instruction fetch, and controls the offsef register.
The execution of an ALU instruction by process ALU can overlap with the
execution of a memory instruction by process MU. The jump and branch in-
structions are executed by EXEC; store-pc is executed by the ALU as the

9.5. STALLING THE PIPELINE 117

instruction “add the content of register r to the pc and store it.” The array
REQGIE] of processes implements the register file. Both MU and PCADD con-
tain their own adder. Processes IMEM and DMEM describe the instruction
memory and data memory, respectively.

9.4.1 Updating the PC

The variable pc is updated by process PCADD, and is used by IMEM as the
index of the array imem during the ID communication—the instruction fetch.

The assignment pe := pe+ 1 is decomposed into y 1= pc+1; pe := y, where
y is a local variable of PCADD . The overlap of the instruction fetch, I1D?
(etther ID?i or ID70ffset), and the pc increment, y := pc+ 1, can now occur
while pc is constant. Action D7 is enclosed between the two communication
actions PCI! and PCI2, as follows:

PCIL;IDY; PCI2 .

In PCADD, y := pc+ 1 is enclosed between the same two communication
actions while the updating of pc follows PCI2:

PCI1 — PCILy:=pc+ 1, PCI2;pc:=y .

Since the completions of PCII and PCI2 in FETCH coincide with the com-
pletion of PCII and PCIZ in PCADD, respectively, the execution of ID7: in
FETCH overlaps the execution of y 1= pc + 1 in PCADD. PCI! and PCI2
are implemented as the two halves of the same communication handshaking
to minimize the overhead.

In order to concentrate all increments of pc inside PCADD, we use the
same technique to delegate the assignment pc := pc + offset (executed by the
EXEC part in the sequential program) to PCADD.

The guarded command Xof — X'loffset Xof in PCADD has been trans-
formed into a concurrent process since it needs only be mutually exclusive
with assignment y := pc+ offset, and this mutual exclusion is enforced by the
sequencing between PCAL; PCA2 and Xof within EXEC.

9.5 Stalling the Pipeline

When the pc is modified by EXEC as part of the execution of a pe instruc-
tion, (store-pc, jump or branch), fetching the next instruction by FETCH is
postponed until the correct value of the pcis assigned to PCADD.pc.

When the offset is reserved for MU by EXEC, as part of the execution of
some memory instructions, fetching the next instruction, which might be a
new offset, is postponed until MU has received the value of the current offset,

118 CHAPTER 9. THE FIRST ASYNCHRONOUS MICROPROCESSOR

IMEM = «[IDlimem[pc]]
FETCH = *[PCI1;ID?%; PCI2;
[offset(i.0p) — PCI1;ID?offset; PCI2
{moffset(i.op) — skip
l; E1%; E2
]
PCADD= (#][PCII — PCIl,y:=pc+ 1;PCIZipc:=y
[PCAI — PCALly = pc+ offset; PUA2,pc:=y
Xpc — Xlpce Xpe
T’_ﬁg — YpceYpe

pom—
= =

l1¥[[Xof — X!offset ¢ Xof]]

)
EXEC= #[El%j;

[alu(j.op) — E2: XseY se AC!jope ZAs

Jld(j.op) = F2; XseYse MCle ZRs

[st(j.op) = B2 XseYse MC2e ZWs

lidz(j.op) = Xof e Yse MCl e ZRs; E2

[stz(j.op) = XofeYse MC2e ZWs; E2

MHda(j.op) — Xof e Ys5e MC3e ZRs; E2

[stpe(j.op) — XpceYs e ACladd @ Z As; E2

limp(j.op) — Ypce Ys; E2

[breh(j.op) — F1f; [cond(f,j.cc) = PCAL, PCA2
|-cond(f,j.cc) = skip
| B2

11

Figure 9.3: The final program, first part

9.6. SHARING REGISTERS AND BUSES 119

ALU = #[[AC —» ACTope X7z e Y7y;
(z,F) = aluf (z,y,0p, f}; ZAlz
|F — Ff
1]
MU =+[[MCI —» X?z ¢Y 7y e MClyma =z +y; MDI?w; ZMw
[MC2 — Xz e Y7y e MC2 @ ZM?w;ma ;= = + y; MDslw
JMC3 — X?z e YTy e MC3;ma:=z +y; ZM!ma
1l
DMEM = [[MDI — MDl!dmem|ma]
|MDs — MDs?dmem[ma]
Il
REG[k] = (*[[-bk Ak = jz AXs — X!r o Xs]|
|| #[{=bk Ak =jyAYs = YireYs]|
%[~k Ak =j.z AZWs — ZM'r ¢ ZW 5|
||#[[~bk Ak = j.z A ZAs — bR 13 ZAs; ZAMr bk |]|
|#[[-bk Ak = j.z A ZRs — bk 1; ZRs; ZM?r; bk 1]

Figure 9.4: The final program, second part

In the second design, we have refined the protocol to block FETCH ouly when
the next instruction is a new offset.

Postponing the start of the next cycle in FET'CH is achieved by postpon-
ing the completion of the previous cycle, i.e., by postponing the completion of
the communication action on channel E. As in the case of the PCT commu-
nication, E is decomposed into two communications, E1 and E2. Again, Fl
and E2 are implemented as the two halves of the same handshaking protocol.

In FETCH, E% is replaced with Elli; E2. In EXEC, E2 is postponed
until after either Xof?offset or a complete execution of a pc instruction has
occurred.

9.6 Sharing Registers and Buses

A bus is used by two processes at a time, one of which is a register and the
other is EXEC, MU, ALU, or PCADD. We therefore decided to introduce
enough buses so as not to restrict the concurrent access to different registers.
For instance, AL U writing a result into a register should not prevent MU from
using another register at the same time.

The four buses correspond to the four main concurrent activities invelving

120 CHAPTER 9. THE FIRST ASYNCHRONOUS MICROPROCESSOR

the registers. The X bus and the Y bus are used to send the parameters of an
ALTU operation to the ALU, and to send the parameters of address calculation
to the memory unit. We also make opportunistic use of them to transmit the
pc and the offset to and from PCADD.

The ZA bus is used to transmit the result of an ALU operation to the
registers. The ZM bus is used by the memory unit to transmit data between
the data memory and the registers.

We make a virtue out of necessity by turning the restriction that registers
can be accessed only through those four buses into a convenient abstraction
mechanism. The ALU uses only the X, Y, and ZA ports without having to
reference the particular registers that are used in the communications. It is
the task of EXEC to reserve the X, Y, and ZA bus for the proper registers
before the ALU uses them.

The same holds for the MU process, which references only X, ¥, and Z M.
An additional abstraction is that the X bus is used to send the offset to MU,
go that the cases for which the first parameteris ¢.z or offset are now identical,
since both parameters are sent via the X bus.

9.6.1 Exclusive Use of a Bus

Commands Xpc, ¥Ype, and Xof are used by EXEC to select the X and Y buses
for communication of pc and offset. Commands Xs, Ys, and ZAs are used by
EXEC to select the X, Y, and Z4 buses, respectively, for a register that has
to communicate with the ALU as part of the execution of an ALU instruction.

Two commands are needed to select the ZM bus: ZW s if the bus is to
be used for writing to the data memory, and ZRs if the bus is to be used for
reading from the data memory.

Let us first solve the problem of the mutual exclusion among the different
uses of a bus. As long as we have only one ALU and one memory unit, no
conflict is possible on the ZA and ZM buses, since only the ALU uses the
Z A bus, and only the memory unit uses the ZM bus. But the X and Y buses
are used concurrently by the ALU, the memory unit, and the pc unit.

We achieve mutual exclusion on different uses of the X bus as follows.
(The same argument holds for ¥.) The completion of an X communication
is made to coincide with the completion of one of the selection actions Xs,
Xof, Xpe; and the occurrences of these selection actions exclude each other
in time inside EXEC since they appear in different gnarded commands.

This coincidence is implemented by the bullet command: We recall that,
for arbitrary communication commands U’ and V inside the same process,
U/ o V guarantees that the two actions are completed at the same time. We
then say that the two actions coincide. The use of the bullets X'pce Xpc and
Xloffset @ Xof inside PCADD , and Xr » X s inside the registers enforces the
coincidence of X with Xpe, Xof, and Xs, respectively. The bullets in EXEC,

9.7. REGISTER SELECTION 121

ALU, and MU have been introduced for reasons of efficiency: Sequencing is
avoided.

9.7 Register Selection

Command Xs in EXEC selects the X bus for the particular register whose
index k is equal to the field 4.z of the instruction ¢ being decoded by EXEC,
and analogously for commands Y's, ZAs, ZHs, and ZW s.

Each register process REGIE], for 0 < k < 186, consists of five elementary
processes, one for each selection command. The register that is selected by
commmand Xs is the one that passes the test & = ¢.z. This implementation
requires that the variable <.z be shared by all registers and EXEC. An al-
ternative solution that does not require shared variables uses demultiplexer
processes. (The implementations of the two solutions are almost identical.}

The semicolons in the last two guarded commands of REG[k] are intro-
duced to pipeline the computation of the result of an ALU instruction or
memory instruction with the decoding of the next instruction.

9.7.1 Mutual Exclusion on Registers

A register may be used in several arguments (z, ¥, or z) of the same instruc-
tion, and also as an argument in two successive instructions whose executions
may overlap, We therefore have to address the issue of the concurrent uses of
the same register. Two concurrent actions on the same register are allowed
when they are both read actions.

Concurrency within an instruction is not a problem: X and ¥ communi-
cations on the same register may overlap, since they are both read actions,
and Z cannot overlap with either X or ¥ because of the sequencing inside
ALU and MU.

Concurrency in the access to a register during two consecutive overlapping
instructions (one instruction is an ALU and the other is a memory instruction)
can be a problem: Writing a result into a register (a ZA or a ZR action) in
the first instruction can overlap with another action on the same register in
the second instruction. But, because the selection of the z register for the
first instruction takes place before the selection of the registers for the second
instruction, we can use this ordering to impose the same ordering on the
different accesses to the same register when a ZA or ZR is involved.

This ordering is implemented as follows: In REG[k], variable bk (initially
false) is set to true before the register is selected for ZA or ZR, and it is set
back to false only after the register has been actually used. All uses of the
register are guarded with the condition —bk. Hence, all subsequent selections
of the register are postponed until the current ZA or ZR is completed.

122 CHAPTER 9. THE FIRST ASYNCHRONOUS MICROPROCESSOR

We must ensure that bk is not set to true before the register is selected
for an X or a Y action inside the same instruction, since this would lead to
deadlock. We omit this refinement which does not appear in the program of
Figures 9.3 and 9.4.

9.8 Conclusion

Instruction pipelining has been approached as a concurrent programming
problem: Starting with a sequential program for the processor, concurrency
is introduced through a series of program transformations. However, al-
though the transformations are guided by the intent to overlap the important
phases—fetch, decode, execute—of instruction execution, they are neither me-
chanical nor unique. The designer decides how to decompose a program into
several concurrent ones. We do not claim that our solution in this first design
is in any way optimal.

Since the choice of an instruction set was not part of the experiment, our
design should be judged in two ways: the choice of the concurrent program
of Figures 9.3 and 9.4, and its implementation. The implementation, which
is described in [7], is satisfactory, but not optimal. The sizing of transistors
can be improved and the number of transitions can be decreased, mainly by
a better placement of inverters. For instance, the delays due to the control
for a buffer are both about twice their theoretical minimum.

The program represents the choice of a pipeline, and of synchronization
techniques to implement it. We have deliberately chosen a simple pipeline.
In particular, the mechanism for stalling, which places part of the decoding
in series with the fetch on the critical path, sacrifices efficiency for simplicity.
However, performance evaluations show that the pipeline is well-balanced
since the different stages have comparable average delays. Improving the
critical path by overlapping fetch and decode requires improving the ALU
and memory instruction execution stages by pipelining parts of these stages.

The practicality of overlapping ALU and memory instruction executions
remains an open issue. It is not clear whether the gain in performance is
worth the complexity of the synchronization involved and the requirement of
two separate Z buses.

We find the synchronization techniques used to implement the concurrent
activities between the different stages of the pipeline particularly elegant and
efficient, since the delays incurred in a synchronization can be of arbitrary
length and vary from instruction to instruction.

We foresee excellent performances for asynchronous processors as the fea-
ture size keeps decreasing. But the designer must be ready to use new methods
based on concurrent programmming, in order to exploit asynchronous tech-
niques to their fullest.

Chapter 10

The Limitations to
Delay-Insensitivity

10.1 Introduction

In this chapter, we characterize the class of circuits that are entirely DI,
and we show that this class is surprisingly limited: Practically all circuits of
interest fall outside the class since closed circuits inside the class may contain
only C-elements as multiple-input operators.

We prove that all DI circuits have to fulfill the so-called Unique-Successor-
Set criterion; and we show that the class of circuits that meet this criterion
is very limited. We also give a characterization of the class of computations
that admit a DI implementation. Finally, we discuss what we consider to be
the weakest compromise to delay-insensitivity, namely, isochronic forks.

10.2 Circuits as Networks of Gates

A DI circuit is & network of logical operators, or gates. A gate has one or
more Boolean inputs and one Boolean output. (Later, we will introduce gates
with multiple outputs.) The state of the circuit is entirely characterized by
the values of the input and output variables of the gates.

We assume that all circuits are closed: Each variable of a circuit is the
input of a gate and also the output of a gate. An open circuit is transformed
into a closed one by representing the environment of the circuit as gates.

A gate with output variable 2 is defined by the two production rules:

B, —2z1
By —z|

123

124 CHAPTER 10. THE LIMITATIONS TO DELAY-INSENSITIVITY

We will assume that a guard is in disjunctive-normal form, that is, it is
either a literal, a term, or a disjunction of terms. A literal is a variable or its
negation; a term is a conjunction of literals.

The two PRs of a gate must fulfill the non-interference requirement. A gate
is a partial function when the non-interference requirement is not a tautology
but has io be maintained as a program invariant. The flip-flop is an example
of such a gate.

The non-interference requirement eliminates the most obvious case of mal-
functioning of a gate. But other forms of malfunctioning, usually called haz-
ards, have to be eliminated as well. A hazard is an incomplete transition on
the output of a gate caused either by two consecutive transitions on one mput
variable or by some concurrent changes on several input variables. In our
model, all occurrences of hazards are eliminated by the stability requirement.

(The stability of the physical implementation of a PR also requires that
the changes in value of the physical quantity—voltage, in MOS technology—
representing the Boolean values be monotonic. However, monotonicity around
the stable values is, in general, neither attainable, because of noise, nor nec-
essary.) :

If a circuit fulfills the non-interference and stability criteria, no glitch or
hazard can corrupt the value of the variables. At any point in time, the
physical quantity representing a variable either has one of the two stable values
representing the two Boolean values, or is monotonically changing from one
stable value to the other.

Any pair of PRs that set and reset the same output variable defines a
valid gate, with the exception of self-invalidating PRs. A rule with guard g
and result r is self-invalidating if r = =g may hold as a postcondition of a
transition of that rule. In other words, the execution of the rule may falsify
the guard. For example, the rules z — @ { and ~z = x T are self-invalidating.

It is always possible to modify the guard of a PR so that it does not contain
the output variable of the gate. (This is achieved by removing all terms that
contain the result as literal. For example, {z A 2) V ¢ +» 21 can be replaced
with ¢ — z T, since an execution of the PR in the state where z A z holds is
vacuous.)

Hence, gates do not contain variables that are both input and output (self-
loops). In the sequel, unless specified otherwise, an execution of a PR is an
effective execution.

10.2.1 Wires

A priori, a wire with input z and output y is the gate defined by the PRs
z +— yT and -z — y|. But, since the composition of any gate, including
a wire, with a wire is the gate itself with one of its variables renamed, we
can add an arbitrary number of wire gates to a circuit definition without

10.2. CIRCUITS AS NETWORKS OF GATES 125

actually changing the circuit. In order to have a unique network of gates for
each circuit, we exclude the wire from the gates; a wire is just a renaming
mechanism for variables.

So far all gates except the wire have more inputs than outputs, but most
circuits have as many outputs as inputs. We must therefore reset the balance

by introducing at least one gate with more outputs than inputs. This gate is
the fork.

10.2.2 Forks and Multiple-Output Gates

A fork has one input and at least two outputs. The fork, f, with input = and
outputs ¥ and z is defined as

z Pyl
~z —ylz)

where the comma means the execution of the two assignments in any order or
concurrently. The generalization to an arbitrary number of outputs is obvious.
The gate

B, ~z1

By —z|

composed with fork f is equivalent to the gate with outputs y and 2

By, ~—yl.21
By w—yl,zl.

Hence, the fork is just a mechanism for replicating the outputs of a gate and for
defining gates with an arbitrary number of outputs. The following discussion
is somewhat simplified if we eliminate the fork and allow instead the type of
multiple-output gates that correspond to the composition of a single-output
gate and a fork. But gates defined in this way have an important restriction:
The effective execution of a PR of a gate contains an effective transition on
each output of the gate.

10.2.3 Summary of the Model

The only restriction that these definitions and conventions introduce on the
class of circuits being considered is the exclusion of gates with self-loops and
of arbitration devices. Unlike models based on the “fundamental mode” of
operation, several inputs of a gate may change values simultaneously as long
as the stability of the guards of the PRs is preserved.

Also, we do not assume that the transitions are instantaneous: A variable
value changes monotonically from the “bottom” value representing one logical
value to the “top” value representing the other logical value, and vice-versa.

126 CHAPTER 10. THE LIMITATIONS TO DELAY-INSENSITIVITY

Because the transitions durations are finite but positive and variable, the
ordering of transitions in & circuit has to be defined with care.

10.3 Partial Order of Transitions

The specification of a sequential circuit defines a partial order of actions taken
from a repertoire of commands. In order to assert that a circuit fulfills a
specification, we must relate this partial order to some other order relation
among transitions of the circuit. The partial order of transitions is defined as
follows.

Consider an effective execution of a PR causing the transition {, and let
C be a term of the guard such that C holds for this execution of the PR.

We attach to C a set, T, of transitions in the following way. Each literal
of C uniquely defines a transition: The literal = is the result of a transition
of type z T, and the literal -z is the result of a transition of type z |. (The
initialization of a variable is also considered a transition.) By definition, we
say that transition t is a successor of each transition of T. In other words, a
transition is the successor of the set of transitions that make the guard true,
including initializations.

For example, if the PR is # Ay — 21, we say that each transition =z 7T is
the successor of a transition z T and of a transition y 1.

If the guard of the PR is of the form AV B, the transition is the successor of
the set of transitions that make A true, or of the set of transitions that make
B true. Hence, the successor relation defined is not unique for a given circuit,
A computation is a particular successor relation on a set of transitions, such
that each computation corresponds to a possible execution of the circuit. The
set of transitions of a computation is finite if the corresponding execution of
the circuit terminates, and possibly infinite otherwise.

JFrom the successor relation, we can now construct a relation < that is
a pre-order; that is, it is transitive and anti-reflexive, Once we have the pre-
order relation <, we construct the partial order < by defining £1 < ¢2 to mean
t1 <12 or t1 = {2,

Transitivity. For any two transitions t1 and t2, we say that {1 < t2 when
12 is a successor of t1, or there exists a transition t3 such that t1 < {3 and
t3 < t2.

Anti-reflexivity. t <t holds for no transition ¢.

REMARK: Anti-reflexivity is satisfied if, for each ring of gatesin the circuit,
there is always at least one PR whose guard is true and whose result is false—
the ring “oscillates.” Anti-reflexivity excludes rings of gates that are used to
maintain constant values of variables, as in cross-coupled device constructions

10.4. IMPLEMENTATION OF STABILITY 127

of storage elements. We therefore assume that the storage elements are parts
of “perfect wires,” so to speak, that keep the value of a variable until the next
transition on the variable. [J

Definition. A chain from a to b is a finite, non-empty set {£;,0 <7 < n} of
transitions such that tg = a, t, = b, and for all 1, 0 < ¢ < n, i; is a successor
of t;_y. By construction, a < b means that there is a chain from a to b. If
a < b, we say that b follows a.

10.4 Implementation of Stability

Consider again an execution of a PR with guard B and transition ¢. Either B
is never falsified once it holds, but then t is the last transition on the variable
involved, and we say that the transition is finral. Or B is falsified after a finite
number of transitions following £, in which case, in order to implement the
stability of B, we have to see to it that ¢ is completed before B is falsified.
For all transitions ¢ that falsify B, we have to guarantee t < i. Hence, by
definition of the order relation, there must be a transition s such that s is a
successor of t, and s < 4. We say that s acknowledges . Hence, the

Acknowledgment Theorem. In a DI circuit, each non-final transition has
a successor transition.

By construction of multiple-output gates, we have the

Corollary. In a DI circuit, a non-final transition on an input of a gate has a
successor transition on each output of the gate.

EXaMPLE: Consider the three following gates with two inputs, z and y,
and one output, z. The flip-flop is defined as £ +— 27T and ~y = z}, the
asymmetric C-element as z Ay — 271 and -y — z |, and the switch as
zAyr zTand c Aoy — z .

Since no guard of these gates has a term containing the literal -z, a tran-
sition of type z | has no successor. Hence, according to the Acknowledgment
Theorem, there can be at most two transitions on z in any computation of a
DI circuit using any of these three gates. [

10.5 The Unique-Successor-Set Criterion

Later on, we shall give a simple criterion for deciding whether a given circuit—
a network of gates—is DI. But such a criterion does not tell us whether there
exists a DI circuit for a given specification. We shall therefore formulate
a more general theorem that characterizes the partial orders of transitions

128 CHAPTER 10. THE LIMITATIONS TO DELAY-INSENSITIVITY

that admit a DI implementation. This criterion enables us to decide that a
program has no DI implementation without having to construct a circuit.

Successor Set. In a computation, the successor set of a transition t is the
set of variables x such that a transition on x is a successor of t.

Unique-Successor-Set Property. A computation has the unique-successor-
set (USS) property when all non-final transitions on the same variable have
the same successor set. A set of computations has the USS property when all
non-final transitions on the same variable have the same successor set in all
computations of the set.

Unique-Successor-Set Theorem. A set of computations of a DI circuit
has the USS property.

Proof. Consider an arbitrary variable z of a DI circuit. By the corollary of
the Acknowledgment Theorem, any non-final transition ¢ on # has a successor
transition on each output of the gate, say G, of which z is an input.

By definition of the successor set, the set of output variables of G is the
successor set of £. But since the set of output variables of a gate is unique,
the successor set is the same for all non-final transitions on z. [

10.6 Characterization of DI computations

Although the Unique-Successor-Set Theorem is a direct consequence of the
Acknowledgment Theorem, its formulation in terms of computations instead
of gates makes it possible to lift the result from the implementation level to
the specification level. Since the partial orders of actions defining a circuit are
projections of the partial orders of actions implementing it, we shall investigate
whether the USS property is maintained by projection.

Definition. Given a computation, ¢, on a set of variables, V, the projection
of ¢ on a subset, W, of V is the computation derived from ¢ by removing all
transitions on variables of V\W from the chains of c. The projection of a set
of computations is the set obtained by projecting each element of the original
set,

Projection Theorem. If a set of computations has the USS property, then
its projection on a subset of variables has the USS property.

Proof. By definition, the projection of a set of computations on W can be
obtained by removing the elements of V\W one for one from all chains of each
computation of the set. We prove the theorem by showing that removing all
transitions on one variable, say, w, maintains the USS property of the set.

10.6. CHARACTERIZATION OF DI COMPUTATIONS 129

Let # be another variable, and let X be the USS of (all transitions on)
z in all computations of the set. Either w does not belong to X and X is
left unchanged by the transformation, or w is removed from X. But then, for
each transition tz on z, the successor set of the transition on w that follows
tz must be added to the successor set of tx. Since all transitions on w have
the same successor set in all computations of the set, the new X is the same
for all transitions and all computations of the set. []

10.6.1 Example: One-Place Buffer

The cyclic program *[X; Y], where X and Y are communication commands, is
called a one-place buffer'. It is a basic building block of asynchronous circuit
design since it is used to implement the sequencing of any two actions. With
a four-phase handshaking protocol for implementing the communications, an
expansion of the program in terms of elementary variables is:

*[[zi]; zo 15 [zl zo Lyyo 1; [yl yo L; [-wil),

where #i and y: are the input variables, and zo and yo are the output
variables?. (See Figure 1.} The environment of the circuit can be simply
modeled as tlhe two programs:

*[zi 15 [zo]; 21 |; [-zo]]
*llyols yi 15 [~yols v |].

These three programs are concurrent. Now observe that the projection of a
computation on the output variables of the first program gives the computa-
tion described by the program

*{xo 1520 [yyo Tiyo0).

Obviously, this computation does not have the USS property; therefore, by
the Projection Theorem, the closed circuit implementing the three programs
is not DI. But the two environment programs can be implemented with an
inverter gate and an identity gate, which are DI circuits. Hence, there is no
DI circuit implementing this version of the one-place buffer with four-phase
handshaking,.

We can state a more general result. We observe that, for whatever four-
phase handshaking is chosen for X and Y, the projection on the output vari-
ables is always *[zo T; 3o |;yo1; %o |], unless the handshaking actions of X are
reordered (“shuffled”) with respect to the handshaking actions of Y. Hence,
the

1The notation *[5] stands for the non-terminating repetition of the program 5.
2¥or an atbitrary Boolean expression B, the command [B] is a shorthand notation for
[B ~» skip], and can be informally defined as “wait until B holds.”

130 CHAPTER 10. THE LIMITATIONS TO DELAY-INSENSITIVITY

zi yo
ZS +(X;Y] i?
zo vi

Figure 10.1: A one-place buffer and its interface

Theorem. There is no DI circuit implementing a one-place buffer with un-
shuffled four-phase handshaking.

We can shuffle the handshaking actions of X with respect to the hand-
shaking actions of ¥, so that the projection on the output variables is the
sequence

*[zo T3y0 520 [3y0 |].

Now, the sequence has the USS property, and we can implement the one-place
buffer as a DI circuit. An example is shown in Figure 2.

10.7 Specifications and the USS Property

The Projection Theorem is very useful because we can also define when a
specification has the USS property. If a specification does not have the prop-
erty, we can immediately conclude that there exists no DI implementation of
the specification. The projection from implementation to specification occurs
as follows.

We assume that, whatever specification notation is used, whether pro-
grams, traces, or regular expressions, it is possible to derive from the speci-

10.7. SPECIFICATIONS AND THE USS PROPERTY 131

2 rd Ad

z0& C yi

Figure 10.2: A DI circuit for the one-place buffer

fication certain properties of the partial order of actions involved. Hence, in
the sequel, a specification is a set of partial orders of actions, where an action
is an execution of a command taken from some given repertoire.

We also assume that an elementary variable can be uniquely identified with
(the implementation of) each command: The transitions on the variable occur
only in the executions of the command, and each execution of the command
contains a transition on the variable. This (in theory, slightly restrictive)
assumption is needed only for the following

Specification Theorem. If the specification of a circuit does not have the
V85 property, the circuit is not DL

Proof. Consider a specification, §, of a circuit. For each command, X, of
S, we substitute a transition on the elementary variable x that is uniquely
associated with X. We obtain a set, s, of partial orders of transitions on
elementary variables. Since the existence of the USS property is independent
of whether the transitions are upgoing or downgoing (that is, the “direction”
of the transitions), we can decide whether s has the USS property even though
the direction of the transitions in s is undefined.

By definition, we say that specification § has the USS property if and
only if the set, s, thus defined has the USS property. By construction, s is a

132 CHAPTER 10. THE LIMITATIONS TQ DELAY-INSENSITIVITY

projection of the set of computations of the circuit specified by 5. Hence, by
the Projection Theorem and the USS Theorem, if s does not have the USS
property, the circuit is not DI. [

EXAMPLES: The following examples, which we give without proofs, show
how limited is the class of programs that admit a DI implementation. (In
the examples, all commands are different from skip.) We assume that the
semantics of the program notation are clear enough that we can identify the
programs with the partial order of actions they represent.

o Let P = %[S1:82;... Sp), and assume that there is no equivalent program

*[S1; Sa; ... Sk)

with k < n. (We say that P is a minimal representation. For instance, »[X; X]
is not minimal since *[X] is an equivalent program.)

Then P has the USS property if and only if 5; # S; for ¢ # j. Hence, the
“modulo-2 counter” *[X; X; Y] and all other “modulo-k counters” have no DI
implementation. A similar result has been proved by C. J. Seger[22].

e The program x[Sy;[By — S2[B2 — Ssj; 54, with Sy # S3, does not have
the USS property. Hence, there is no DI circuit implementing such a selec-
tion command. [J

10.8 Gate Characterization of DI Circuits

We have already seen that, apart from the trivial case where one input of
the gates changes at most twice, there is no DI circuit that contains either a
flip-flop, or an asymmetric C-element, or a switch. In the same way, we can
use the USS and the Projection Theorems to show that there is no DI circuit
containing either an or-gate, or an and-gate, or an exclusive-or, in which each
input of the gates changes more than a minimum number of times specific to
each case. Consider an or-gate with inputs = and y and ontput z. The only
sequence® in which each transition on an input is acknowledged is:

((zhizhzliz) ez by liz L))

‘We easily see that any computation that contains a transition on both inputs
does not have the USS property.

The cases of the and-gate and of the exclusive-or are treated similarly and
are left as an exercise for the reader. After having eliminated all gates with at
most two inputs except the inverter and the Muller-C element, we are led to
conjecture that a DI circuit contains only C-elements, C-elements are defined
as follows.

3The notation (§)* is the Kleene-star notation standing for an arbitrary number of
actions § in sequence.

10.8. GATE CHARACTERIZATION OF DI CIRCUITS 133

Definition. An n-input gate in which B, is the conjunction of the n input
variables and By is the conjunction of the negations of the n input variables
is called an n-input C-element. A gate derived from a C-element by negating
one or more literals in B, or By is also a C-element.

The Muller-C element is a two-input C-element according to our definition,
A one-input C-element reduces to either a wire or an inverter.

C-Element Theorem. If a DI circuit has only one computation, and if the
computation contains at least three transitions on each variable, then the
circuit can be constructed with C-elements only.

Proof. Let z be an arbitrary variable of the circuit; z is the input of gate
g with output z. We shall prove that g can be implemented as a C-element.
Since there are no self-loops, x and z are different variables.

First, observe that because of the non-interference, all trausitions on the
same variable are totally ordered. And because all transitions are effective,
upgoing and downgoing transitions on the same variable alternate.

Since the circuit contains at least three (effective) transitions on each vari-
able, at least one transition of type z T is followed by a transition of type z |,
and at least one transition of type z | is followed by a transition of type 1.

Let t1 be a transition of type x T and £2 be the transition of type z]
following it. For the guard of the PR of t1 to be stable, there must be a

transition tz on z such that {1 < tz < t2. We also know that ¢z is a successor
of t1.

By the USS Theorem and the Projection Theorem, there is exactly one
transition £z on z such that 1 < tz < {2. By the same argument, there is
exactly one transition on z between a transition of type x| and the transition
of type z T following it.

Without loss of generality, assume that the first transition on x is of type
z T and the first transition on z is of type z T. Then, because of the alternation
of upgoing and downgoing transitions on each variable, each transition of type
z 1 is the successor of a transition of type T, and each transition of type z |
is the successor of a transition of type = |.

By definition of the successor relation, z holds as a precondition of each
transition z T; thus, guard B, of ¢ can be formulated so that all terms contain
z, since a term that is never true can be removed. Hence, B,, can be chosen
of the form = A C,,, where C,, does not contain z. Symmetrically, guard By
of ¢ can be chosen of the form -z A Cy4, where Cy does not contain z. Since
this property of B, and By holds for each input of g, g is a C-element or can
be replaced with a C-element. []

134 CHAPTER 10. THE LIMITATIONS TO DELAY-INSENSITIVITY

10.9 Isochronic Forks

Since the class of DI circuits is so limited, we must have compromised the
delay-insensitivity in the circuits that we designed using the synthesis method
described, for instance, in {12} and [11]. Let us analyze a standard sequencing
circuit used in this design style. (It is similar to the one-place buffer, but is
simpler to use as an example.) This circuit (Figure 3) is an implementation
of the sequence of elementary actions:

¥[[zi];yo T: [yil: v T ful; yo i [~wils 2o T3 [~azils w |; [u]; 2o |].

zl
u .
z2
U
IO .
{K <yt

Figure 10.3: A sequencing element containing isochronic forks

The environment of the circuit is the same as that of the one-place buffer,
The z- and y-variables are each parts of a four-phase handshaking sequence,
and » is a state variable—without w, it would not be possible to encode each
state of the circuit uniquely. Since the projection of this sequence on the
variables zo, yo, and u lacks the USS property, and since the environment of
the circuit can be implemented as an inverter and an identity, the circuit is
not DL

In order to find out where we have cheated, we must look at the forks.
We observe that z¢ is an input both of the and-gate with output yo and of
the C-element. Hence, the circuit actually contains a fork with input zz and
two outputs, say, 1 and £2. Similarly, the circuit contains a fork with input

16.9. ISOCHRONIC FORKS 135

yi, and a fork with input w. Let us analyze the behavior of the first fork by
introducing it explicitly into the set of PRs of the circuit. For the sake of
simplicity, we ignore the other two forks. We get:

xi — 11,227
zl At — yol
T2 Ay ol
~zlVu 50 |

Yyt A — zoi
et -zl x2)]
g2 Ay —ul
yi V —u = %o |

Transitions z1 T and 2 T are both acknowledged by the two PRs that fol-
low. But only transition 22 | is acknowledged. Transition z1 | is not acknowl-
edged. Hence, the circuit is not DI, because the Acknowledgment Theorem is
not satisfied. Therefore, the completion of transition z1] is not guaranteed
unless we implement the fork as an isochronic fork, which is defined as follows.

In an isochronic fork, when a transition on one output is acknowledged,
and thus completed, the transitions on all outputs are acknowledged, and thus
completed.

(We leave it as an exercise to the reader to check that the fork with input
yt must also be isochronic, but not the fork with input u.)

The implementation of an isochronic fork relies on two types of assump-
tions about delays. First, we have to assume that the difference between the
delays in the branches of the fork is negligible compared to the delays in the
gates. This requirement is easy to meet in current MOS technology except
when there is an inverter on one branch of the fork and not on the other
branch(es). The fork with input yi has such an inverter, and therefore, the
inverter must be removed by proper circuit transformations.

Second, and more important in current technology, we have to assume
that the switching thresholds in the different gates to which the fork is an
input are close enough to each other. This requirement is more difficult to
meet than the first one because, on the one hand, the thresholds of individual
transistors are difficult to control—in particular in CMOS; on the other hand,
the switching thresholds of a gate vary greatly with the logical design of the
gate. For these reasons, this requirement may impose a design style in which
all gates are implemented as combinational gates, so that the fight between
pull-up and pull-down during the switching of the gate keeps the switching
threshold around VDD/2. Observe that, unlike what is advocated in other
compromises to delay-insensitivity, enforcing the locality of the wires offers
little help in implementing isochronicity because locality is irrelevant to the
issue of threshold voltages!

136 CHAPTER 10. THE LIMITATIONS TO DELAY-INSENSITIVITY

10.10 For Whom the Bell Tolls?

Are these results tolling the bell for DI design? Actually, not. At worst, they
may slightly embarrass those researchers who ¢laim to have a design method
for entirely DI circuits. At best, they vindicate the compromises to delay-
insensitivity adopted by several asynchronous design methods. Most likely,
they are sobering reminders of the difficulty of VLSI design and the novelty
of asynchronous design. _

We have proved elsewhere that extending a standard repertoire of DI gates
with isochronic forks is sufficient to construct any circuit of interest. The
proof consists in giving a circuit implementation for each construct of the
progam notation we use (see [2]). I believe the isochronic fork to be the
weakest possible compromise to delay-insensitivity in the sense that all other
compromises also include isochronic forks: For instance, in speed-independent
design[19], all forks are supposed to be isochronic; in self-timed design[23], all
forks inside a certain region—called an equipotential region—are assumed to
be isochronic.

Chapter 11

Conclusion

We have described a method for implementing a concurrent program (a set
of communicating processes) as a network of digital operators that can be
directly mapped into a delay-insensitive VLSI circuit. The circuit is derived
from the program by applying a series of systematic, semantics-preserving
transformations that we have compared to compiling. Hence, the circuits are
correct by construction, and their logical correctness is independent of the
delays in operators and wires, with the exception of isochronic forks.

The most encouraging aspect of the method is that it is really a synthesis
technique: it allows designers to construct solutions that they would never
have found had they not applied the method. Different applications of the
transformations lead to different circuits for the same program. Although all
circuits are semantically equivalent, they may exhibit different behaviors in
terms of speed or size {number of operators used). The method therefore in-
cludes the trade-offs between simplicity and efficiency that shounld be available
to the VLSI designer.

Using concurrency to implement a sequential computation may seem waste-
ful at first sight. But VLSI is essentially a concurrent medium: concurrency is
implemented at no cost by mere juxtaposition of the concurrent parts. On the
other hand, implementing sequencing requires synchronization and is, in gen-
eral, more expensive. We shall therefore implement sequencing as restricted
concurrency. Once a process has been transformed into a semantically equiv-
alent set, the problem of implementing sequencing has disappeared!

This technique entails one of the main novelties of the method. Other
techniques implement sequencing by transforming the computation into a
finite-state machine, and realizing each state with a state-holding element.
In our technique, some state-holding elements may be needed, but the num-
ber of those elements is drastically less than in techniques using finite-state
machines,

137

138 CHAPTER 11. CONCLUSION

Since the issue of isochronic forks seems to have confused certain readers
of previous papers, let us make clear a number of points. First, most forks
need not be isochronic, as, for instance, the fork that distributes a control
signal to all bits of a register. Second, the isochronicity requirement is easy to
meet when there is no inverter on the branches of the fork, and in practice, it
is usually easy to move the inverters so as to remove them from the branches
of isoclhironic forks. Third, isochronic forks are necessary to implement the
sequencing of two four-phase handshaking protocols; therefore, methods that
claim to dispense with isochronic forks just hide them inside building blocks.

The proofs that the transformations preserve the semantics of the algo-
rithms rely on properties of the four-phase handshaking protocol with which
the communication primitives are implemented. Although rigorous proofs of
these properties have been omitted, the reader should have no difficulty in
being convinced of their correctness, and thus of the correctness of the trans-
formations perfornted.

The examples cover most constructs of the language but not all of them:
We have not shown how to implement an arbitrary set of guards. Therefore,
we have not quite shown that eny program in the language can be compiled.
Such a proof has been given in [1] and [2], where the compilation of each
construct is described as part of the basic algorithm for an automatic compiler.
It is shown that any program in a subset of the language can be implemented
as a delay-insensitive circuit using only a small set of basic elements: the
2-input C-element, the 2-input or-gate or 2-input and-gate, the synchronizer,
the inverter, and the isochronic fork.

However, there is no reason for confining the designer to a minimal set
of operators. On the contrary, since an advantage of VLSI is the possibility
to create operators at no cost, introducing the special purpose operator that
exactly implements an arbitrary set of production rules often simplifies a
circuit drastically.

In order to convince the VLSI community of the practicality of our method,
it was essential that we fabricated the circuits we had designed. Hence, all
significant examples that we have used in our research—distributed mutual ex-
clusion, queues, stack, routing automata for communication network, 3X + 1
engine, microprocessor—have been fabricated in SCMOS using the MOSIS
foundry service. They have all be found to be correct on “first silicon”.
They are also very robust, and surprisingly fast, given the low-level of cir-
cuit optimization applied. The 32 4+ 1 engine, constructed by Tony Lee, is
a special-purpose processor consisting of a state-machine and an 80-bit-wide
datapath. It contains approximately 40,000 transistors and operates at over 8
MIPS (million instructions per second) in 24 Um MOSIS SCMOS technology.

We have designed the first asynchronous general-purpose microprocessor
in CMOS. The results of this experiment, described in Chapter 9, are very en-

11.1. ACKNOWLEDGMENTS 139

couraging and contradict the long-held belief that asynchrenous techniques are
too slow and too wasteful in area for something as demanding as a pipelined
general-purpose microprocessor. We have just finished a GaAs version of the
same microprocessor. It is now being fabricated by Vitesse through the MO-
SIS service. Although it is too early to report any performance results, this
experiment already demonstrates how easy it is with such a synthesis method
to transport a complete design across very different technologies.

11.1 Acknowledgments

I am indebted to my students Drazen Borkovié. Steve Burns, Marcel van der
Goot, Pieter Hazewindus, Tony Lee, and José Tierno for their contributions
to the research and for their comments on the manuscript.

140 CHAPTER 11. CONCLUSION

Bibliography

[1] J.A. Brzozowski and J.C. Ebergen. Recent Developments in the Design
of Asynchronous Circuits. Research Report CS-89-18, Computer Science
Department, University of Waterloo, 1989.

[2] Steven M. Burns and Alain J. Martin. Syntax-directed Translation of
Concurrent Programs into Self-timed Circuits. Proe. Fifth MIT Confer-
ence on Advanced Research in VLSI, ed. J. Allen and F. Leighton, MIT
Press, 35-40, 1988,

[3] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Foun-
dation. Addison-Wesley, Reading MA, 1988,

{4] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engle-
wood Cliffs NJ, 1976.

[5] David L. Dill. Theory for Automatic Hierarchical Verification of Speed-
Independent Circuits. MIT Press, 1989,

[6] C.A.R. Hoare. Communicating Sequential Processes. Comm. ACM 21,8,
pp 666-677, 1978,

[7} Alain J. Martin. The Probe: An Addition to Communication Primitives.
Information Processing letters 20, pp 125-130, 1985.

[8] Alain J. Martin. Distributed Mutual Exclusion on a Ring of Processes.
Science of Computer Programming, 5, 265-276, 1985,

[9] Alain J. Martin. The Design of a Self-timed Circuit for Distributed
Mutual Exclusion. 1985 Chapel Hill Conference on VLSI, ed. Henry
Fuchs, Computer Science Press, 247-260, 1985.

[10] Alain J. Martin. A Delay-insensitive Fair Arbiter. Technical Report

5193:TR:85, Computer Science Department, California Institute of Tech-
nology, 1985.

141

142 BIBLIOGRAPHY

[11] A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, P.J. Hazewindus. The
Design of an Asynchronous Microprocessor. Decennial Caltech Confer-
ence on VLSI ed. C.L. Seitz, MIT Press, 351-273, 1989,

[12] Alain J. Martin. Compiling Communicating Processes into Delay-
insensitive VLSI circuits. Distributed Computing, 1,(4), 1986.

[13] Alain J. Martin. Formal Program Transformations for VLSI Circuit Syn-
thesis. UT Year of Programming Institute on Formal Developments of
Programs and Proofs, ed. E-W. Dijkstra, Addison-Wesley, Reading MA,
1989.

[14] Alain J. Martin. Synthesis of Asynchronous VLSI Circuits. Formal Meth-
ods for VLSI Design, ed. J. Staunstrup, North-Holland, 1980.

[15] Alain J. Martin. The Limitations to Delay-Insensitivity in Asynchronous
Circuits. Sizth MIT Conference on Advanced Research in VISI, ed. W.J.
Dally, MIT Press, 1990.

[16] Raymond E. Miller. Switching Theory, Vol. 2, Wiley. 1965.

[17] Carver Mead and Lynn Conway. Introduction to VLSI Systems, Addison-
Wesley, Reading MA, 1980.

[18] Teresa H. Meng, Robert W. Brodersen, David G. Messerchmitt. Auto-
matic Synthesis of Asynchronous Circuits from High-Level Specifications.
IEEFE Trans. on CAD, 8:11, 1185-1205, 1989.

[19] Raymond E. Miller. Switching Theory, Vol. 2, Wiley, 1965,

[20] David E. Muller and W.S. Bartky. A Theory of Asynchronous Circuits.
Annals of the Computation Laboratory of Harvard University, Vol. 29,
Harvard University Press, Cambridge, Mass., 204-243, 1959.

[21] J. Staunstrup and M.R. Greenstreet. Designing Delay-Insensitive Cir-
cuits using “Synchronized Transitions.” IMEC IFIP International Work-
shop on Applied Formal Methods for Correct VLSI Design, 1989.

[22] Carl-Johan Seger. On the Existence of Speed-Independent Circuits. Re-

search Report C5-87-63, Computer Science Department, University of
Waterloo, 1987.

[23] Charles L. Seitz. System Timing. Chapter 7 in Mead & Conway, Intro-
duction to VLSI Systems, Addison-Wesley, Reading MA, 1980.

[24] Snepscheut, J.v.d., Trace Theory and VLST Design LNCS 200, Springer-
Verlag Berlin Heidelberg (1985)

BIBLIOGRAPHY 143

{25] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design, Addison-
Wesley Reading MA, 1985,

